Charge transport and hydrodynamics in materials

被引:16
作者
Varnavides, Georgios [1 ]
Yacoby, Amir [2 ]
Felser, Claudia [3 ]
Narang, Prineha [4 ]
机构
[1] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA USA
[3] Max Planck Inst Chem Phys Fester Stoffe, Dresden, Germany
[4] Univ Calif Los Angeles, Coll Letters & Sci, Phys Sci, Los Angeles, CA 90095 USA
关键词
ELECTRON FLOW; THERMAL-CONDUCTIVITY; RESISTANCE; VORTICES;
D O I
10.1038/s41578-023-00597-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As high-quality single-crystal materials used in electronic devices approach the microscale and nanoscale, charge-transport phenomena in these devices result in inhomogeneous spatial signatures with strong implications for observable material properties. These signatures include spatially varying dissipation, which affects thermal management strategies in devices, and interface resistance between different materials, and are essential for the functional control of devices. In this Review, we investigate the spatially inhomogeneous signatures of charge flow in conductors, with particular emphasis on the recently rekindled field of electron hydrodynamics, a regime where electrons are strongly interacting and can flow collectively akin to fluids. We highlight recent experimental advances in transport measurements that enabled the observation of these signatures and review the theoretical frameworks used to interpret and predict these observations. We outline the new charge-transport phenomena introduced by crystal symmetry in materials, provide an outlook on future research opportunities and identify experimental and theoretical challenges in the study of hydrodynamic transport in materials.
引用
收藏
页码:726 / 741
页数:16
相关论文
共 84 条
[1]   Direct observation of vortices in an electron fluid [J].
Aharon-Steinberg, A. ;
Volkl, T. ;
Kaplan, A. ;
Pariari, A. K. ;
Roy, I. ;
Holder, T. ;
Wolf, Y. ;
Meltzer, A. Y. ;
Myasoedov, Y. ;
Huber, M. E. ;
Yan, B. ;
Falkovich, G. ;
Levitov, L. S. ;
Hucker, M. ;
Zeldov, E. .
NATURE, 2022, 607 (7917) :74-+
[2]   NEW METHOD FOR SOLVING BOLTZMANNS EQUATION FOR ELECTRONS IN METALS [J].
ALLEN, PB .
PHYSICAL REVIEW B, 1978, 17 (10) :3725-3734
[3]  
[Anonymous], 1905, Ach. neerl.
[4]  
[Anonymous], 2017, Digitalisation and Energy
[5]   Odd viscosity [J].
Avron, JE .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (3-4) :543-557
[6]   Directional ballistic transport in the two-dimensional metal PdCoO2 [J].
Bachmann, Maja D. ;
Sharpe, Aaron L. ;
Baker, Graham ;
Barnard, Arthur W. ;
Putzke, Carsten ;
Scaffidi, Thomas ;
Nandi, Nabhanila ;
McGuinness, Philippa H. ;
Zhakina, Elina ;
Moravec, Michal ;
Khim, Seunghyun ;
Konig, Markus ;
Goldhaber-Gordon, David ;
Bonn, Douglas A. ;
Mackenzie, Andrew P. ;
Moll, Philip J. W. .
NATURE PHYSICS, 2022, 18 (07) :819-+
[7]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[8]   Fluidity onset in graphene [J].
Bandurin, Denis A. ;
Shytov, Andrey V. ;
Levitov, Leonid S. ;
Kumar, Roshan Krishna ;
Berdyugin, Alexey I. ;
Ben Shalom, Moshe ;
Grigorieva, Irina V. ;
Geim, Andre K. ;
Falkovich, Gregory .
NATURE COMMUNICATIONS, 2018, 9
[9]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[10]   Scanning gate microscopy in a viscous electron fluid [J].
Braem, B. A. ;
Pellegrino, F. M. D. ;
Principi, A. ;
Roeoesli, M. ;
Gold, C. ;
Hennel, S. ;
Koski, J., V ;
Berl, M. ;
Dietsche, W. ;
Wegscheider, W. ;
Polini, M. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2018, 98 (24)