FURTHER REFINEMENTS OF DAVIS-WIELANDT RADIUS INEQUALITIES

被引:5
作者
Bhunia, Pintu [1 ]
Paul, Kallol [2 ]
Barik, Somdatta [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 03期
关键词
Davis-Wielandt radius; numerical radius; operator norm; inequality; NUMERICAL RANGE; SHELL;
D O I
10.7153/oam-2023-17-50
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose T,S are bounded linear operators on a complex Hilbert space. We show that the Davis-Wielandt radius dw(center dot) satisfies the following inequalities dw(T + S) <= root 2(dw(2)(T) + dw(2)(S)) + 6 parallel to |T|(4) +|S|(4) parallel to <= 2 root 2 root dw(2)(T) + dw(2)(S) <= 2 root 2(dw(T) + dw(S)). From the third inequality we obtain the following lower and upper bounds for the Davis-Wielandt radius dw(T) of the operator T : dw(T) >= 1/4 root 2 max {dw(2Re(T)),dw(2Im(T))}, dw(T) <= 2 root 2(dw(Re(T)) + dw(Im(T))). Further, we develop several new lower and upper bounds for the Davis-Wielandt radius of the operator T which improve the existing ones. Application of these bounds are also provided.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
[41]   FURTHER INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS [J].
Ranjbar, Hassan ;
Niknam, Asadollah .
JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (04) :25-32
[42]   New Refinements of Generalized Numerical Radius Inequalities [J].
Burgan, A. Liaa ;
Alnaddaf, Baha'aldeen ;
Conde, Cristian ;
Al-Natoor, Ahmad .
MATHEMATICAL ANALYSIS AND NUMERICAL METHODS, IACMC 2023, 2024, 466 :507-517
[43]   Refinements of some numerical radius inequalities for Hilbert space operators [J].
Alomari, Mohammad W. .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07) :1208-1223
[44]   The A-Davis-Wielandt Berezin number of semi Hilbert operators with some related inequalities [J].
Goli, Fatemeh ;
Lashkaripour, Rahmatollah ;
Hajmohamadi, Monire .
FILOMAT, 2023, 37 (12) :3837-3856
[45]   Further results on A-numerical radius inequalities [J].
Nirmal Chandra Rout ;
Debasisha Mishra .
Annals of Functional Analysis, 2022, 13
[46]   FURTHER NUMERICAL RADIUS INEQUALITIES [J].
Alomari, Mohammad W. ;
Sahoo, Satyajit ;
Bakherad, Mojtaba .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01) :307-308
[47]   Further p-numerical radius inequalities [J].
Aici, Soumia ;
Frakis, Abdelkader ;
Kittaneh, Fuad .
JOURNAL OF ANALYSIS, 2025,
[48]   A-Davis-Wielandt Radius Bounds of Semi-Hilbertian Space Operators [J].
Guesba, Messaoud ;
Barik, Somdatta ;
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
[49]   Refinements of numerical radius inequalities using the Kantorovich ratio [J].
Nikzat, Elham ;
Omidvar, Mohsen Erfanian .
CONCRETE OPERATORS, 2022, 9 (01) :70-74
[50]   Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators [J].
Kais Feki ;
Fuad Kittaneh .
Mediterranean Journal of Mathematics, 2022, 19