FURTHER REFINEMENTS OF DAVIS-WIELANDT RADIUS INEQUALITIES

被引:5
作者
Bhunia, Pintu [1 ]
Paul, Kallol [2 ]
Barik, Somdatta [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 03期
关键词
Davis-Wielandt radius; numerical radius; operator norm; inequality; NUMERICAL RANGE; SHELL;
D O I
10.7153/oam-2023-17-50
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose T,S are bounded linear operators on a complex Hilbert space. We show that the Davis-Wielandt radius dw(center dot) satisfies the following inequalities dw(T + S) <= root 2(dw(2)(T) + dw(2)(S)) + 6 parallel to |T|(4) +|S|(4) parallel to <= 2 root 2 root dw(2)(T) + dw(2)(S) <= 2 root 2(dw(T) + dw(S)). From the third inequality we obtain the following lower and upper bounds for the Davis-Wielandt radius dw(T) of the operator T : dw(T) >= 1/4 root 2 max {dw(2Re(T)),dw(2Im(T))}, dw(T) <= 2 root 2(dw(Re(T)) + dw(Im(T))). Further, we develop several new lower and upper bounds for the Davis-Wielandt radius of the operator T which improve the existing ones. Application of these bounds are also provided.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
[31]   Refinements of some numerical radius inequalities for operators [J].
Soumia Aici ;
Abdelkader Frakis ;
Fuad Kittaneh .
Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 :3815-3828
[32]   Flat portions on the boundary of the Davis-Wielandt shell of 3-by-3 matrices [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) :204-214
[33]   The weighted Davis-Wielandt Berezin number for reproducing kernel Hilbert space operators [J].
Mahdiabadi, Nooshin Eslami ;
Bakherad, Mojtaba ;
Hajmohamadi, Monire ;
Petrushka, Mykola .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01)
[34]   Further refinements of generalized numerical radius inequalities for Hilbert space operators [J].
Hajmohamadi, Monire ;
Lashkaripour, Rahmatollah ;
Bakherad, Mojtaba .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) :83-92
[35]   On Refinements of Numerical Radius Inequalities [J].
Javariya Hyder ;
Muhammad Saeed Akram .
Iranian Journal of Science, 2023, 47 :915-925
[36]   On Refinements of Numerical Radius Inequalities [J].
Hyder, Javariya ;
Akram, Muhammad Saeed .
IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) :915-925
[37]   Bounds for the Davis–Wielandt radius of bounded linear operators [J].
Pintu Bhunia ;
Aniket Bhanja ;
Santanu Bag ;
Kallol Paul .
Annals of Functional Analysis, 2021, 12
[38]   REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES [J].
Bhunia, Pintu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :1953-1965
[39]   The inverse q-numerical range problem and connections to the Davis-Wielandt shell and the pseudospectra of a matrix [J].
Carden, Russell L. ;
Jahromi, Mostafa Zahed .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 :479-497
[40]   SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES [J].
Qiao, Hongwei ;
Hai, Guojun ;
Bai, Eburilitu .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02) :425-444