In silico evidence implicating novel mechanisms of Prunella vulgaris L. as a potential botanical drug against COVID-19-associated acute kidney injury

被引:3
作者
Yang, Xue-Ling [1 ]
Wang, Chun-Xuan [1 ]
Wang, Jia-Xing [2 ]
Wu, Shi-Min [3 ]
Yong, Qing [2 ]
Li, Ke [2 ]
Yang, Ju-Rong [1 ]
机构
[1] Chongqing Med Univ, Dept Nephrol, Affiliated Hosp 3, Chongqing, Peoples R China
[2] Xi An Jiao Tong Univ, Affiliated Hosp 2, Core Res Lab, Xian, Peoples R China
[3] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Key Lab Bioproc, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
COVID-19; acute kidney injury; cytokine storm; network pharmacology; molecular docking; NF-KAPPA-B; INTEGRATING INFORMATION; NETWORK PHARMACOLOGY; GENES; INFLAMMATION; INHIBITION; COVID-19; EXTRACT; MICE;
D O I
10.3389/fphar.2023.1188086
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-?B signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.
引用
收藏
页数:17
相关论文
共 72 条
[1]   Covid-19 and kidney injury: Pathophysiology and molecular mechanisms [J].
Ahmadian, Elham ;
Hosseiniyan Khatibi, Seyed Mahdi ;
Razi Soofiyani, Saiedeh ;
Abediazar, Sima ;
Shoja, Mohammadali M. ;
Ardalan, Mohammadreza ;
Zununi Vahed, Sepideh .
REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (03)
[2]   OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders [J].
Amberger, Joanna S. ;
Bocchini, Carol A. ;
Schiettecatte, Francois ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D789-D798
[3]   Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry [J].
Ao, Zhujun ;
Chan, Mable ;
Ouyang, Maggie Jing ;
Olukitibi, Titus Abiola ;
Mahmoudi, Mona ;
Kobasa, Darwyn ;
Yao, Xiaojian .
PLOS ONE, 2021, 16 (06)
[4]   Phytochemistry and pharmacological activities of the genus Prunella [J].
Bai, Yubing ;
Xia, Bohou ;
Xie, Wenjian ;
Zhou, Yamin ;
Xie, Jiachi ;
Li, Hongquan ;
Liao, Duanfang ;
Lin, Limei ;
Li, Chun .
FOOD CHEMISTRY, 2016, 204 :483-496
[5]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties [J].
Boeing, Thaise ;
De Souza, Priscila ;
Speca, Silvia ;
Somensi, Lincon Bordignon ;
Mariano, Luisa Nathalia Bolda ;
Cury, Benhur Judah ;
Ferreira dos Anjos, Mariana ;
Quintao, Nara Lins Meira ;
Dubuqoy, Laurent ;
Desreumax, Pierre ;
Da Silva, Luisa Mota ;
De Andrade, Sergio Faloni .
BRITISH JOURNAL OF PHARMACOLOGY, 2020, 177 (10) :2393-2408
[8]  
Case D. A., 2022, Amber 22 reference manual
[9]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[10]   TTD: Therapeutic Target Database [J].
Chen, X ;
Ji, ZL ;
Chen, YZ .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :412-415