Overview of Machine Learning-Enabled Battery State Estimation Methods

被引:4
作者
Zhuge, Yingjian [1 ]
Yang, Hengzhao [1 ]
Wang, Haoyu [1 ,2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China
来源
2023 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC | 2023年
基金
中国国家自然科学基金;
关键词
Machine learning; deep learning; state of charge (SOC); state of health (SOH); LITHIUM-ION BATTERIES; OF-CHARGE ESTIMATION; OPEN-CIRCUIT VOLTAGE; NEURAL-NETWORK; HEALTH ESTIMATION; SOC ESTIMATION; ONLINE STATE; CAPACITY; MODEL; PREDICTION;
D O I
10.1109/APEC43580.2023.10131605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To ensure safe usage and robust performance of energy storage batteries, accurate state-of-charge (SOC) and state-of-health (SOH) estimations are required. Due to recent breakthroughs in machine learning and artificial intelligence methods, data-driven methods have attracted increased attention. This paper reports state-of-the-art research progress in machine learning-enabled methods for SOC and SOH estimations. Comprehensive comparisons are made in terms of the dataset, estimation accuracy, and battery type to provide a clear picture for SOC and SOH estimation. Moreover, the challenges and research opportunities on future SOC and SOH estimation are disclosed.
引用
收藏
页码:3028 / 3035
页数:8
相关论文
共 72 条
[1]   Support Vector Machines Used to Estimate the Battery State of Charge [J].
Alvarez Anton, Juan Carlos ;
Garcia Nieto, Paulino Jose ;
Blanco Viejo, Cecilio ;
Vilan Vilan, Jose Antonio .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) :5919-5926
[2]  
[Anonymous], J POWER STORAGE
[3]  
[Anonymous], ENERGY
[4]  
Birkl C., 2017, Oxford Battery Degradation Dataset 1
[5]  
BROEKAERT WF, 1995, PLANT PHYSIOL, V108, P1353, DOI [10.1016/j.eclinm.2021.100771, 10.1182/blood-2012-08-450627, 10.1016/j.coelec.2021.100721, 10.1016/j.chiabu.2021.105188, 10.1016/j.jaap.2012.10.004, 10.1016/j.biortech.2014.10.140, 10.1016/j.envsoft.2012.10.004, 10.1016/j.tourman.2012.10.007, 10.1016/j.carres.2021.108368]
[6]   Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries [J].
Burgos-Mellado, Claudio ;
Orchard, Marcos E. ;
Kazerani, Mehrdad ;
Cardenas, Roberto ;
Saez, Doris .
APPLIED ENERGY, 2016, 161 :349-363
[7]   Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization [J].
Castanho, Diego ;
Guerreiro, Marcio ;
Silva, Ludmila ;
Eckert, Jony ;
Alves, Thiago Antonini ;
Tadano, Yara de Souza ;
Stevan, Sergio Luiz ;
Siqueira, Hugo Valadares ;
Correa, Fernanda Cristina .
ENERGIES, 2022, 15 (19)
[8]   State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms [J].
Chandran, Venkatesan ;
Patil, Chandrashekhar K. ;
Karthick, Alagar ;
Ganeshaperumal, Dharmaraj ;
Rahim, Robbi ;
Ghosh, Aritra .
WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01)
[9]   State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Emadi, Ali .
JOURNAL OF POWER SOURCES, 2018, 400 :242-255
[10]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739