The Use of Artificial Intelligence and Machine Learning in Surgery: A Comprehensive Literature Review

被引:11
作者
Dagli, Mert Marcel [1 ]
Rajesh, Aashish [2 ]
Asaad, Malke [3 ]
Butler, Charles E. [3 ]
机构
[1] Med Univ Innsbruck, Innsbruck, Austria
[2] Univ Texas Hlth Sci Ctr San Antonio, Dept Surg, San Antonio, TX 78229 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Plast & Reconstruct Surg, Houston, TX 77030 USA
关键词
artificial intelligence; machine learning; natural language processing; plastic surgery; cosmetic surgery; NEURAL-NETWORKS; LOGISTIC-REGRESSION; BURN PATIENTS; BLACK-BOX; PREDICTION; CLASSIFICATION; DIAGNOSIS; SURVIVAL; VISION; DEPTH;
D O I
10.1177/00031348211065101
中图分类号
R61 [外科手术学];
学科分类号
摘要
Interest in the use of artificial intelligence (AI) and machine learning (ML) in medicine has grown exponentially over the last few years. With its ability to enhance speed, precision, and efficiency, AI has immense potential, especially in the field of surgery. This article aims to provide a comprehensive literature review of artificial intelligence as it applies to surgery and discuss practical examples, current applications, and challenges to the adoption of this technology. Furthermore, we elaborate on the utility of natural language processing and computer vision in improving surgical outcomes, research, and patient care.
引用
收藏
页码:1980 / 1988
页数:9
相关论文
共 113 条
[1]  
Abubakar A., 2019, J ELECTRON IMAGING, V29, P1
[2]   Burn Depth Analysis Using Multidimensional Scaling Applied to Psychophysical Experiment Data [J].
Acha, Begona ;
Serrano, Carmen ;
Fondon, Irene ;
Gomez-Cia, Tomas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) :1111-1120
[3]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[4]   Factors Related to Pediatric Unintentional Burns: The Comparison of Logistic Regression and Data Mining Algorithms [J].
Aghaei, Abbas ;
Soori, Hamid ;
Ramezankhani, Azra ;
Mehrabi, Yadollah .
JOURNAL OF BURN CARE & RESEARCH, 2019, 40 (05) :606-612
[5]  
Al-Shayea QeetharaKadhim., 2011, INT J COMPUTER SCI I, V8, P150
[6]   Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Sawazaki-Calone, Iris ;
Kowalski, Luiz Paulo ;
Haglund, Caj ;
Coletta, Ricardo D. ;
Makitie, Antti A. ;
Salo, Tuula ;
Almangush, Alhadi ;
Leivo, Ilmo .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 136
[7]   Artificial neural networks in medical diagnosis [J].
Amato, Filippo ;
Lopez, Alberto ;
Pena-Mendez, Eladia Maria ;
Vanhara, Petr ;
Hampl, Ales ;
Havel, Josef .
JOURNAL OF APPLIED BIOMEDICINE, 2013, 11 (02) :47-58
[8]  
[Anonymous], 2021, BLACK BOXF AI IMPR S
[9]  
[Anonymous], 2015, Morning Consult National Tracking Poll #150704
[10]   Electromyography data for non-invasive naturally-controlled robotic hand prostheses [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Castellini, Claudio ;
Caputo, Barbara ;
Hager, Anne-Gabrielle Mittaz ;
Elsig, Simone ;
Giatsidis, Giorgio ;
Bassetto, Franco ;
Muller, Henning .
SCIENTIFIC DATA, 2014, 1