Pricing American Options under Levy Jump Models: A Multidimensional Transform Method

被引:0
作者
Beliaeva, Natalia [1 ]
Chen, Ye [2 ]
Nawalkha, Sanjay [3 ]
Sullivan, Michael [4 ]
机构
[1] Suffolk Univ, Dept Finance, Boston, MA 02108 USA
[2] Empire State Univ, Sch Grad Studies, Saratoga Springs, NY USA
[3] Univ Massachusetts, Dept Finance, Amherst, MA 01003 USA
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
JOURNAL OF DERIVATIVES | 2023年 / 31卷 / 02期
关键词
STOCHASTIC VOLATILITY; DIFFUSION MODEL; VALUATION; SCHEME; IMPLICIT; PRICES; IMPACT; GARCH;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article presents a transform-based approach for pricing American options under Levy models with stochastic volatility and jumps. With the transform approach introduced in this article, simple, path-independent lattices can be constructed for three classes of option pricing models, including stochastic volatility jump models, Levy jump models, and Levy jump models with stochastic volatility. Our transform-based approach is computationally efficient and notably accurate. To the best of our knowledge, this article is the first to study path-independent lattices for pricing American options under Levy models with stochastic volatility and jumps.
引用
收藏
页码:9 / 35
页数:27
相关论文
共 49 条
[1]   JUMP DIFFUSION OPTION VALUATION IN DISCRETE-TIME [J].
AMIN, KI .
JOURNAL OF FINANCE, 1993, 48 (05) :1833-1863
[2]   An empirical investigation of continuous-time equity return models [J].
Andersen, TG ;
Benzoni, L ;
Lund, J .
JOURNAL OF FINANCE, 2002, 57 (03) :1239-1284
[3]   Empirical performance of alternative option pricing models [J].
Bakshi, G ;
Cao, C ;
Chen, ZW .
JOURNAL OF FINANCE, 1997, 52 (05) :2003-2049
[4]   Do call prices and the underlying stock always move in the same direction? [J].
Bakshi, G ;
Cao, C ;
Chen, ZW .
REVIEW OF FINANCIAL STUDIES, 2000, 13 (03) :549-584
[5]   Maximum likelihood estimation of latent affine processes [J].
Bates, David S. .
REVIEW OF FINANCIAL STUDIES, 2006, 19 (03) :909-965
[6]   Post-'87 crash fears in the S&P 500 futures option market [J].
Bates, DS .
JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) :181-238
[7]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[8]   Empirical option pricing: a retrospection [J].
Bates, DS .
JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) :387-404
[9]  
Beliaeva N., 2022, A Multi -Dimensional Transform for Pricing American Options under Stochastic Volatility Models, DOI [10.2139/ssrn.1528827, DOI 10.2139/SSRN.1528827]
[10]   A Simple Approach to Pricing American Options Under the Heston Stochastic Volatility Model [J].
Beliaeva, Natalia A. ;
Nawalkha, Sanjay K. .
JOURNAL OF DERIVATIVES, 2010, 17 (04) :25-43