2023 roadmap for materials for quantum technologies

被引:26
作者
Becher, Christoph [1 ]
Gao, Weibo [14 ,15 ,16 ]
Kar, Swastik [3 ]
Marciniak, Christian D. [4 ]
Monz, Thomas [4 ,5 ]
Bartholomew, John G. [6 ,7 ]
Goldner, Philippe [8 ]
Loh, Huanqian [9 ]
Marcellina, Elizabeth [10 ]
Goh, Kuan Eng Johnson [9 ,11 ]
Koh, Teck Seng [10 ]
Weber, Bent [10 ]
Mu, Zhao [2 ]
Tsai, Jeng-Yuan [3 ]
Yan, Qimin [3 ]
Huber-Loyola, Tobias [12 ]
Hoefling, Sven [12 ]
Gyger, Samuel [13 ]
Steinhauer, Stephan [13 ]
Zwiller, Val [13 ]
机构
[1] Univ Saarland, Fachrichtung Phys, Campus E2 6, D-66123 Saarbrucken, Germany
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[4] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[5] AQT, A-6020 Innsbruck, Austria
[6] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, Australia
[7] Univ Sydney, Sydney Nanosci Inst, Sydney, Australia
[8] PSL Univ, Inst Rech Chim Paris, Chim ParisTech, CNRS, Paris, France
[9] Natl Univ Singapore, Singapore, Singapore
[10] Nanyang Technol Univ, Singapore, Singapore
[11] ASTAR, Singapore, Singapore
[12] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[13] KTH Royal Inst Technol, S-10691 Stockholm, Sweden
[14] Nanyang Technol Univ, Photon Inst, Singapore 637371, Singapore
[15] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[16] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
MATERIALS FOR QUANTUM TECHNOLOGY | 2023年 / 3卷 / 01期
关键词
quantum; materials; quantum technology; quantum information science; INFORMATION-STORAGE; SPIN QUBIT; SILICON; ELECTRON; ION; EMISSION; BLOCKADE; EXCHANGE; EMITTERS; PHOTONS;
D O I
10.1088/2633-4356/aca3f2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum technologies are poised to move the foundational principles of quantum physics to the forefront of applications. This roadmap identifies some of the key challenges and provides insights on material innovations underlying a range of exciting quantum technology frontiers. Over the past decades, hardware platforms enabling different quantum technologies have reached varying levels of maturity. This has allowed for first proof-of-principle demonstrations of quantum supremacy, for example quantum computers surpassing their classical counterparts, quantum communication with reliable security guaranteed by laws of quantum mechanics, and quantum sensors uniting the advantages of high sensitivity, high spatial resolution, and small footprints. In all cases, however, advancing these technologies to the next level of applications in relevant environments requires further development and innovations in the underlying materials. From a wealth of hardware platforms, we select representative and promising material systems in currently investigated quantum technologies. These include both the inherent quantum bit systems and materials playing supportive or enabling roles, and cover trapped ions, neutral atom arrays, rare earth ion systems, donors in silicon, color centers and defects in wide-band gap materials, two-dimensional materials and superconducting materials for single-photon detectors. Advancing these materials frontiers will require innovations from a diverse community of scientific expertise, and hence this roadmap will be of interest to a broad spectrum of disciplines.
引用
收藏
页数:36
相关论文
共 162 条
  • [1] Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis
    Abdi, Mehdi
    Chou, Jyh-Pin
    Gali, Adam
    Plenio, Martin B.
    [J]. ACS PHOTONICS, 2018, 5 (05): : 1967 - 1976
  • [2] Advances in Silicon Quantum Photonics
    Adcock, Jeremy C.
    Bao, Jueming
    Chi, Yulin
    Chen, Xiaojiong
    Bacco, Davide
    Gong, Qihuang
    Oxenlowe, Leif K.
    Wang, Jianwei
    Ding, Yunhong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (02)
  • [3] Afzelius M., 2015, Engineering the Atom-Photon Interaction
  • [4] Ultranarrow Optical Inhomogeneous Linewidth in a Stoichiometric Rare-Earth Crystal
    Ahlefeldt, R. L.
    Hush, M. R.
    Sellars, M. J.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (25)
  • [5] Precision Measurement of Electronic Ion-Ion Interactions between Neighboring Eu3+ Optical Centers
    Ahlefeldt, R. L.
    McAuslan, D. L.
    Longdell, J. J.
    Manson, N. B.
    Sellars, M. J.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (24)
  • [6] D1 magic wavelength tweezers for scaling atom arrays
    Aliyu, Mohammad Mujahid
    Zhao, Luheng
    Quek, Xiu Quan
    Yellapragada, Krishna Chaitanya
    Loh, Huanqian
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [7] omg blueprint for trapped ion quantum computing with metastable states
    Allcock, D. T. C.
    Campbell, W. C.
    Chiaverini, J.
    Chuang, I. L.
    Hudson, E. R.
    Moore, I. D.
    Ransford, A.
    Roman, C.
    Sage, J. M.
    Wineland, D. J.
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (21)
  • [8] Intrinsic Timing Jitter and Latency in Superconducting Nanowire Single-photon Detectors
    Allmaras, J. P.
    Kozorezov, A. G.
    Korzh, B. A.
    Berggren, K. K.
    Shaw, M. D.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (03)
  • [9] Five-second coherence of a single spin with single-shot readout in silicon carbide
    Anderson, Christopher P.
    Glen, Elena O.
    Zeledon, Cyrus
    Bourassa, Alexandre
    Jin, Yu
    Zhu, Yizhi
    Vorwerk, Christian
    Crook, Alexander L.
    Abe, Hiroshi
    Ul-Hassan, Jawad
    Ohshima, Takeshi
    Son, Nguyen T.
    Galli, Giulia
    Awschalom, David D.
    [J]. SCIENCE ADVANCES, 2022, 8 (05)
  • [10] Material platforms for spin-based photonic quantum technologies
    Atature, Mete
    Englund, Dirk
    Vamivakas, Nick
    Lee, Sang-Yun
    Wrachtrup, Joerg
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (05): : 38 - 51