Edge sites enriched vanadium doped MoS2/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection

被引:6
|
作者
Sibi, S. P. Linto [1 ]
Rajkumar, M. [1 ]
Govindharaj, Kamaraj [2 ]
Mobika, J. [3 ]
Priya, V. Nithya [1 ]
Thangavelu, Rajendra Kumar Ramasamy [2 ]
机构
[1] PSG Coll Arts & Sci, Dept Phys, Coimbatore 641014, Tamil Nadu, India
[2] Bharathiar Univ, Dept Nanosci & Technol, Adv Mat & Devices Lab AMDL, Coimbatore 641046, Tamil Nadu, India
[3] Nandha Engn Coll, Dept Phys, Erode 638052, Tamil Nadu, India
关键词
GRAPHENE; PERFORMANCE; NANOCOMPOSITES; ELECTROCATALYST; NANOSHEETS; REDUCTION; CATALYSTS;
D O I
10.1039/d3tc02192k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS2/RGO (MG) nanocomposite gas sensors with substantial ammonia sensing traits at room temperature via an in situ hydrothermal method. The characterization results reveal that the incorporation of vanadium dopants into the host lattice triggered more active edge sites and augmented charge carrier transport across the heterojunctions. The as-formulated hierarchical structured gas sensors (V5) with an optimal vanadium doping concentration of 5 at% exhibited a high selective response of 21.8% towards 50 ppm of ammonia gas at room temperature and a pronounced lowest detection limit of 600 ppb. The V5 gas sensor reflected a 21-fold enhancement in the gas sensing response towards 50 ppm ammonia relative to the pristine MoS2/RGO (MG). The changes attributed to the depletion layer of the p-n heterojunction formed by V@MoS2/RGO upon interaction with ammonia gas molecules and the influence of humidity on the sensing parameters were briefly discussed. The prepared V5 gas sensor proves to be a potential candidate for real-time sub ppb level detection of ammonia at room temperature.
引用
收藏
页码:16333 / 16345
页数:13
相关论文
共 35 条
  • [21] Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature
    Ding, Yanqiao
    Guo, Xuezheng
    Kuang, Delin
    Hu, Xiaofei
    Zhou, Yong
    He, Yong
    Zang, Zhigang
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 416 (416)
  • [22] Highly sensitive, selective and stable NO2 gas sensors with a ppb-level detection limit on 2D-platinum diselenide films
    Su, Teng-Yu
    Chen, Yu-Ze
    Wang, Yi-Chung
    Tang, Shin-Yi
    Shih, Yu-Chuan
    Cheng, Faliang
    Wang, Zhiming M.
    Lin, Heh-Nan
    Chueh, Yu-Lun
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (14) : 4851 - 4858
  • [23] Fast Response Room Temperature Amperometric Gas Sensors with Modified Fe-N-C Electrodes for ppb-Level H2S Detection
    Ma, Xiuming
    Lin, Yangjuan
    Xu, Qi
    Wei, Lei
    Yang, Zheng
    Yao, Dongting
    Rong, Qian
    Zhao, Yongli
    Zhang, Chuanhui
    Li, Kun
    Wang, Chunchang
    Guo, Youmin
    ACS APPLIED NANO MATERIALS, 2024, 7 (14) : 16649 - 16658
  • [24] Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature
    Liu, Yueli
    Wang, Linlin
    Wang, Haoran
    Xiong, Mengyun
    Yang, Tingqiang
    Zakharova, Galina S.
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 236 : 529 - 536
  • [25] Porous polyaniline/flower-like hybrid phase MoS2/phosphorus-doped graphene ternary nanocomposite for efficient room temperature ammonia sensors
    Singh, Ravinder
    Agrohiya, Sunil
    Rawal, Ishpal
    Ohlan, Anil
    Dahiya, Sajjan
    Punia, R.
    Maan, A. S.
    SYNTHETIC METALS, 2024, 307
  • [26] Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity
    Zhang, Yajie
    Jiang, Yadong
    Duan, Zaihua
    Wu, Yingwei
    Zhao, Qiuni
    Liu, Bohao
    Huang, Qi
    Yuan, Zhen
    Li, Xian
    Tai, Huiling
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 434
  • [27] A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS2/GaSe Heterojunction for ppb-Level NO2 Sensing at Room Temperature
    Niu, Yue
    Zeng, Junwei
    Liu, Xiangcheng
    Li, Jialong
    Wang, Quan
    Li, Hao
    de Rooij, Nicolaas Frans
    Wang, Yao
    Zhou, Guofu
    ADVANCED SCIENCE, 2021, 8 (14)
  • [28] Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance
    Huang, Yifan
    Jiao, Weicheng
    Chu, Zhenming
    Ding, Guomin
    Yan, Meiling
    Zhong, Xue
    Wang, Rongguo
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (28) : 8616 - 8625
  • [29] Ni-doped (MoO3/MoS2) heterostructure chemiresistive sensor for dual selective detection of NH3 and NOx at room temperature
    Muthumalai, K.
    Manoharan, Mathankumar
    Govindharaj, Kamaraj
    Saravanan, Poovarasan
    Haldorai, Yuvaraj
    Sofer, Zdenek
    Kumar, Ramasamy Thangavelu Rajendra
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 1017 - 1024
  • [30] Highly sensitive and recoverable room-temperature NO2 gas detection realized by 2D/0D MoS2/ZnS heterostructures with synergistic effects
    Liu, Chao
    Chen, Xinwei
    Luo, Hanyu
    Li, Bolong
    Shi, Jia
    Fan, Chao
    Yang, Jianhua
    Zeng, Min
    Zhou, Zhihua
    Hu, Nantao
    Su, Yanjie
    Yang, Zhi
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 347