Machine Learning in Cardiovascular Risk Prediction and Precision Preventive Approaches

被引:5
作者
Gautam, Nitesh [1 ]
Mueller, Joshua [2 ]
Alqaisi, Omar [3 ]
Gandhi, Tanmay [3 ]
Malkawi, Abdallah [1 ]
Tarun, Tushar [1 ]
Alturkmani, Hani J. [1 ]
Zulqarnain, Muhammed Ali [1 ]
Pontone, Gianluca [4 ]
Al'Aref, Subhi J. [1 ]
机构
[1] Univ Arkansas Med Sci, Dept Internal Med, Div Cardiol, 4301 W Markham St, Little Rock, AR 72223 USA
[2] Univ Arkansas Med Sci, Dept Internal Med, Northwest Reg Campus, Fayetteville, AR USA
[3] Univ Arkansas Med Sci, Dept Internal Med, Little Rock, AR USA
[4] Ctr Cardiol Monzino IRCCS, Milan, Italy
关键词
Atherosclerosis; Coronary artery disease; Genomics; Machine learning; Precision medicine; Primary prevention; CORONARY-ARTERY-DISEASE; BIOMARKERS; CALCIUM; ATHEROSCLEROSIS; PROFILE; EVENTS;
D O I
10.1007/s11883-023-01174-3
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Purpose of ReviewIn this review, we sought to provide an overview of ML and focus on the contemporary applications of ML in cardiovascular risk prediction and precision preventive approaches. We end the review by highlighting the limitations of ML while projecting on the potential of ML in assimilating these multifaceted aspects of CAD in order to improve patient-level outcomes and further population health.Recent FindingsCoronary artery disease (CAD) is estimated to affect 20.5 million adults across the USA, while also impacting a significant burden at the socio-economic level. While the knowledge of the mechanistic pathways that govern the onset and progression of clinical CAD has improved over the past decade, contemporary patient-level risk models lag in accuracy and utility. Recently, there has been renewed interest in combining advanced analytic techniques that utilize artificial intelligence (AI) with a big data approach in order to improve risk prediction within the realm of CAD. By virtue of being able to combine diverse amounts of multidimensional horizontal data, machine learning has been employed to build models for improved risk prediction and personalized patient care approaches.SummaryThe use of ML-based algorithms has been used to leverage individualized patient-specific data and the associated metabolic/genomic profile to improve CAD risk assessment. While the tool can be visualized to shift the paradigm toward a patient-specific care, it is crucial to acknowledge and address several challenges inherent to ML and its integration into healthcare before it can be significantly incorporated in the daily clinical practice.
引用
收藏
页码:1069 / 1081
页数:13
相关论文
共 60 条
[1]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[2]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[3]   Detecting human coronary inflammation by imaging perivascular fat [J].
Antonopoulos, Alexios S. ;
Sanna, Fabio ;
Sabharwal, Nikant ;
Thomas, Sheena ;
Oikonomou, Evangelos K. ;
Herdman, Laura ;
Margaritis, Marios ;
Shirodaria, Cheerag ;
Kampoli, Anna-Maria ;
Akoumianakis, Ioannis ;
Petrou, Mario ;
Sayeed, Rana ;
Krasopoulos, George ;
Psarros, Constantinos ;
Ciccone, Patricia ;
Brophy, Carl M. ;
Digby, Janet ;
Kelion, Andrew ;
Uberoi, Raman ;
Anthony, Suzan ;
Alexopoulos, Nikolaos ;
Tousoulis, Dimitris ;
Achenbach, Stephan ;
Neubauer, Stefan ;
Channon, Keith M. ;
Antoniades, Charalambos .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (398)
[4]   Reciprocal Effects of Systemic Inflammation and Brain Natriuretic Peptide on Adiponectin Biosynthesis in Adipose Tissue of Patients With Ischemic Heart Disease [J].
Antonopoulos, Alexios S. ;
Margaritis, Marios ;
Coutinho, Patricia ;
Digby, Janet ;
Patel, Rikhil ;
Psarros, Constantinos ;
Ntusi, Ntobeko ;
Karamitsos, Theodoros D. ;
Lee, Regent ;
De Silva, Ravi ;
Petrou, Mario ;
Sayeed, Rana ;
Demosthenous, Michael ;
Bakogiannis, Constantinos ;
Wordsworth, Paul B. ;
Tousoulis, Dimitris ;
Neubauer, Stefan ;
Channon, Keith M. ;
Antoniades, Charalambos .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (09) :2151-2159
[5]   Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease [J].
Aryal, Sachin ;
Alimadadi, Ahmad ;
Manandhar, Ishan ;
Joe, Bina ;
Cheng, Xi .
HYPERTENSION, 2020, 76 (05) :1555-1562
[6]   Multi-ethnic study of atherosclerosis: Objectives and design [J].
Bild, DE ;
Bluemke, DA ;
Burke, GL ;
Detrano, R ;
Roux, AVD ;
Folsom, AR ;
Greenland, P ;
Jacobs, DR ;
Kronmal, R ;
Liu, K ;
Nelson, JC ;
O'Leary, D ;
Saad, MF ;
Shea, S ;
Szklo, M ;
Tracy, RP .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 156 (09) :871-881
[7]   Deep Learning in Cardiology [J].
Bizopoulos, Paschalis ;
Koutsouris, Dimitrios .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 :168-193
[8]  
Brindle PM, 2005, BRIT J GEN PRACT, V55, P838
[9]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[10]   Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study [J].
Chia, Yook Chin ;
Gray, Sarah Yu Weng ;
Ching, Siew Mooi ;
Lim, Hooi Min ;
Chinna, Karuthan .
BMJ OPEN, 2015, 5 (05)