On the singular limit problem for a discontinuous nonlocal conservation law

被引:2
作者
Keimer, Alexander [1 ]
Pflug, Lukas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Erlangen, Germany
关键词
Nonlocal conservation law; Discontinuous nonlocal conservation; law; Existence and uniqueness; Singular limit; Entropy solution; Convergence nonlocal to local; WELL-POSEDNESS; CAUCHY-PROBLEM; BALANCE LAWS; POINT-SOURCE; LOCAL LIMIT; FLUX; UNIQUENESS; MODELS; FLOW; EXISTENCE;
D O I
10.1016/j.na.2023.113381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we study the singular limit problem of a nonlocal conservation law with a discontinuity in space. The corresponding local equation can be transformed diffeomorphically to a classical scalar conservation law to which the well-known Kruzkov theory can be applied. However, the nonlocal equation does not scale that way, which is why the study of convergence is interesting to pursue. For exponential kernels in the nonlocal operator, we establish convergence to the solution of the corresponding local equation under mild conditions on the discontinuous velocity. We illustrate our results with some numerical examples.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:21
相关论文
共 55 条
[1]  
Adimurthi, 2007, NETW HETEROG MEDIA, V2, P127
[2]   Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients [J].
Adimurthi ;
Mishra, Siddhartha ;
Gowda, G. D. Veerappa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) :1-31
[3]   Godunov-type methods for conservation laws with a flux function discontinuous in space [J].
Adimurthi ;
Jaffré, J ;
Gowda, GDV .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) :179-208
[4]  
Aggarwal A, 2023, Arxiv, DOI arXiv:2307.15153
[5]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[6]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[7]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[8]  
Chiarello FA, 2021, Arxiv, DOI arXiv:2103.13362
[9]  
Chiarello FA, 2021, Arxiv, DOI arXiv:2003.01975
[10]  
[Anonymous], 1957, Uspehi Mat. Nauk (N.S.)