Tetrahedron genuine entanglement measure of four-qubit systems

被引:2
作者
Guo, Meng-Li [1 ]
Jin, Zhi-Xiang [2 ]
Li, Bo [3 ]
Fei, Shao-Ming [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[3] Zhejiang Univ City Coll, Sch Comp & Comp Sci, Hangzhou 310015, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
four-qubit; genuine entanglement measure; concurrence; tetrahedron; QUANTUM; PARTICLE; STATE;
D O I
10.1088/1751-8121/ace409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantifying genuine entanglement is a key task in quantum information theory. We study the quantification of genuine multipartite entanglement for four-qubit systems. Based on the concurrence of nine different classes of four-qubit states, with each class being closed under stochastic local operation and classical communication, we construct a concurrence tetrahedron. Proper genuine four-qubit entanglement measure is presented by using the volume of the concurrence tetrahedron. For non genuine entangled pure states, the four-qubit entanglement measure classifies the bi-separable entanglement. We show that the concurrence tetrahedron based measure of genuine four-qubit entanglement is not equivalent to the genuine four-partite entanglement concurrence. We illustrate the advantages of the concurrence tetrahedron by detailed examples.
引用
收藏
页数:18
相关论文
共 38 条
[1]   Center-of-mass interpretation for bipartite purity analysis of N-party entanglement [J].
Alonso, Miguel A. ;
Qian, Xiao-Feng ;
Eberly, J. H. .
PHYSICAL REVIEW A, 2016, 94 (03)
[2]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[7]   Separability criteria and bounds for entanglement measures [J].
Breuer, Heinz-Peter .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38) :11847-11860
[8]   Concurrence of arbitrary dimensional bipartite quantum states [J].
Chen, K ;
Albeverio, S ;
Fei, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[9]   Lower bounds on concurrence and separability conditions [J].
de Vicente, Julio I. .
PHYSICAL REVIEW A, 2007, 75 (05)
[10]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311