CCTrans: Improving Medical Image Segmentation with Contoured Convolutional Transformer Network

被引:3
作者
Wang, Jingling [1 ]
Zhang, Haixian [1 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Wangjiang Campus,Wangjiang Rd, Chengdu 610065, Peoples R China
关键词
transformer; medical image segmentation; visual attention mechanism; deep neural networks; machine learning; SKIP CONNECTIONS; UNET;
D O I
10.3390/math11092082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Medical images contain complex information, and the automated analysis of medical images can greatly assist doctors in clinical decision making. Therefore, the automatic segmentation of medical images has become a hot research topic in recent years. In this study, a novel architecture called a contoured convolutional transformer (CCTrans) network is proposed to solve the segmentation problem. A dual convolutional transformer block and a contoured detection module are designed, which integrate local and global contexts to establish reliable relational connections. Multi-scale features are effectively utilized to enhance semantic feature understanding. The dice similarity coefficient (DSC) is employed to evaluate experimental performance. Two public datasets with two different modalities are chosen as the experimental datasets. Our proposed method achieved an average DSC of 83.97% on a synapse dataset (abdominal multi-organ CT) and 92.15% on an ACDC dataset (cardiac MRI). Especially for the segmentation of small and complex organs, our proposed model achieves better segmentation results than other advanced approaches. Our experiments demonstrate the effectiveness and robustness of the novel method and its potential for real-world applications. The proposed CCTrans network offers a universal solution with which to achieve precise medical image segmentation.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[2]   Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network [J].
Cai, Sijing ;
Tian, Yunxian ;
Lui, Harvey ;
Zeng, Haishan ;
Wu, Yi ;
Chen, Guannan .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) :1275-1285
[3]  
Cao H., 2022, COMPUTER VISION ECCV, P205
[4]  
Chen J., 2021, arXiv
[5]  
Chu XX, 2021, ADV NEUR IN
[6]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[7]   The Importance of Skip Connections in Biomedical Image Segmentation [J].
Drozdzal, Michal ;
Vorontsov, Eugene ;
Chartrand, Gabriel ;
Kadoury, Samuel ;
Pal, Chris .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :179-187
[8]  
Gillioz Anthony, 2020, 2020 15th Conference on Computer Science and Information Systems (FedCSIS), P179, DOI 10.15439/2020F20
[9]   Statistical shape models for 3D medical image segmentation: A review [J].
Heimann, Tobias ;
Meinzer, Hans-Peter .
MEDICAL IMAGE ANALYSIS, 2009, 13 (04) :543-563
[10]  
Huang HM, 2020, INT CONF ACOUST SPEE, P1055, DOI [10.1109/ICASSP40776.2020.9053405, 10.1109/icassp40776.2020.9053405]