Improvement of soft-magnetic properties for Fe-based amorphous alloys with high saturation polarization by stress annealing

被引:17
作者
Cai, Mingjuan [1 ]
Wang, Jingjing [1 ]
Wang, Qianqian [1 ,2 ]
Guo, Zhijun [1 ]
Luo, Qiang [1 ]
Zhou, Jing [3 ]
Liang, Tao [4 ]
Li, Xuesong [3 ]
Zeng, Qiaoshi [4 ]
Shen, Baolong [1 ,5 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing, Peoples R China
[2] Nanjing Inst Technol, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Struct Mat & Applicat Technol, Nanjing, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan, Peoples R China
[4] Ctr High Pressure Sci & Technol Adv Res, Shanghai, Peoples R China
[5] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing 211189, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Amorphous alloy; stress annealing; soft-magnetic property; magnetic domain; magnetic anisotropy; HIGH B-S; SURFACE CRYSTALLIZATION; NANOCRYSTALLINE ALLOYS; METALLIC-GLASS; ANISOTROPY; RELAXATION;
D O I
10.1080/21663831.2023.2199044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stress annealing is utilized for enhancing the magnetic softness of Fe83-xCoxB10Si3C3P1 (x = 0-16) amorphous alloys with saturation polarization up to 1.75 T. All of the stress-annealed alloys exhibit improved soft-magnetic properties, including low coercivity of 1.8-2.2 A/m, low core loss of 0.09- 0.11 W/kg at 1.0 T and 50 Hz, and high permeability of 27,000- 33,200 at 5 A/m and 1 kHz. Stress annealing induces longitudinal magnetic anisotropy and facilitates the annihilation of free volume, leading to pinning-free domain wall motion, and thus the enhanced magnetic softness. The induced magnetic anisotropy relates to the constrained elastic elongation introduced by stress annealing.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 46 条
[1]   Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials [J].
Azuma, Daichi ;
Ito, Naoki ;
Ohta, Motoki .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 501
[2]   Origin of low coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) bulk glassy alloys [J].
Bitoh, T ;
Makino, A ;
Inoue, A .
MATERIALS TRANSACTIONS, 2003, 44 (10) :2020-2024
[3]   Novel tin-containing Fe-base glassy alloys [J].
Chin, TS ;
Chao, CK ;
Lin, CY ;
Shih, JC ;
Zhou, SX ;
Lu, ZC ;
Wang, L ;
Chen, FF .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (05) :3016-3018
[4]   Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy [J].
Corte-Leon, P. ;
Blanco, J. M. ;
Zhukova, V. ;
Ipatov, M. ;
Gonzalez, J. ;
Churyukanova, M. ;
Taskaev, S. ;
Zhukov, A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling [J].
Di, Siyi ;
Wang, Qianqian ;
Zhou, Jing ;
Shen, Yiyang ;
Li, Jiaqi ;
Zhu, Mingyun ;
Yin, Kuibo ;
Zeng, Qiaoshi ;
Sun, Litao ;
Shen, Baolong .
SCRIPTA MATERIALIA, 2020, 187 :13-18
[6]   Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system [J].
Fan, X. D. ;
Shen, B. L. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 385 :277-281
[7]   Soft magnetic properties in Fe84-xB10C6Cux nanocrystalline alloys [J].
Fan, X. D. ;
Men, H. ;
Ma, A. B. ;
Shen, B. L. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 326 :22-27
[8]   SOFT FERROMAGNETIC PROPERTIES OF SOME AMORPHOUS ALLOYS [J].
FUJIMORI, H ;
OBI, Y ;
MASUMOTO, T ;
SAITO, H .
MATERIALS SCIENCE AND ENGINEERING, 1976, 23 (2-3) :281-284
[9]   Distributed exchange interactions and temperature dependent magnetization in amorphous Fe88-xCoxZr7B4Cu1 alloys [J].
Gallagher, KA ;
Willard, MA ;
Zabenkin, VN ;
Laughlin, DE ;
McHenry, ME .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :5130-5132
[10]   Mechanical properties of iron-based bulk metallic glasses [J].
Gu, X. J. ;
Poon, S. Joseph ;
Shiflet, Gary J. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (02) :344-351