Recent advances in wearable electromechanical sensors-Moving towards machine learning-assisted wearable sensing systems

被引:63
作者
Dai, Nian [1 ,2 ,3 ,4 ]
Lei, Iek Man [2 ]
Li, Zhaoyang [2 ]
Li, Yi [5 ]
Fang, Peng [1 ,3 ,4 ]
Zhong, Junwen [2 ]
机构
[1] Univ Macau, Dept Electromech Engn, Macau 999078, Peoples R China
[2] Univ Macau, Ctr Artificial Intelligence & Robot, Macau 999078, Peoples R China
[3] Shenzhen Inst Adv Technol, CAS, Key Lab Human Machine Intelligent Synergy Syst, Shenzhen 518055, Peoples R China
[4] Shenzhen Engn Lab Neral Rehabil Technol, Shenzhen 518055, Peoples R China
[5] Univ Macau, Dept Sociol, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Wearable electronics; Electromechanical; Sensors; Machine learning; Human-machine interface; ARTIFICIAL-INTELLIGENCE; PRESSURE SENSOR; TRIBOELECTRIC NANOGENERATOR; DIMENSIONALITY REDUCTION; PIEZORESISTIVE SENSOR; COMPOSITE; IMPLEMENTATION; NANOPARTICLE; ELECTRODES; ARRAYS;
D O I
10.1016/j.nanoen.2022.108041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the assistance of powerful machine learning algorithms, data collecting and processing efficiency of wearable electromechanical sensors are highly improved. Meanwhile, the functions and applications of these intelligent sensing systems are widely enhanced and expanded. In this review, wearable electromechanical sensors with various working mechanisms and their typical usage for monitoring human physiological signals are outlined. The recent advances of machine learning-assisted wearable electromechanical sensing systems in specific applications of tactile perception, gesture/gait recognition, and health care are then summarized and discussed. Finally, current existing limitations and future perspectives are discussed. The progress of intelligent wearable electromechanical sensing systems will promote the development in the domains of human-machine interface (HMI), soft robotics, metaverse, etc.
引用
收藏
页数:23
相关论文
共 160 条
[21]   Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite [J].
Deng, Hai-Tao ;
Zhang, Xin-Ran ;
Wang, Zhi-Yong ;
Wen, Dan-Liang ;
Ba, Yan-Yuan ;
Kim, Beomjoon ;
Han, Meng-Di ;
Zhang, Hai-Xia ;
Zhang, Xiao-Sheng .
NANO ENERGY, 2021, 83
[22]   Deep learning-enabled medical computer vision [J].
Esteva, Andre ;
Chou, Katherine ;
Yeung, Serena ;
Naik, Nikhil ;
Madani, Ali ;
Mottaghi, Ali ;
Liu, Yun ;
Topol, Eric ;
Dean, Jeff ;
Socher, Richard .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[23]   Piezoelectric d33 coefficients in foamed and layered polymer piezoelectrets from dynamic mechano-electrical experiments, electro-mechanical resonance spectroscopy and acoustic-transducer measurements [J].
Fang, Peng ;
Hollaender, Lars ;
Wirges, Werner ;
Gerhard, Reimund .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (03)
[24]   Theory, technology and applications of piezoresistive sensors: A review [J].
Fiorillo, A. S. ;
Critello, C. D. ;
Pullano, S. A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 281 :156-175
[25]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[26]   Stretchable, Transparent, and Self-Patterned Hydrogel-Based Pressure Sensor for Human Motions Detection [J].
Ge, Gang ;
Zhang, Yizhou ;
Shao, Jinjun ;
Wang, Wenjun ;
Si, Weili ;
Huang, Wei ;
Dong, Xiaochen .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (32)
[27]   A wearable and highly sensitive pressure sensor with ultrathin gold nanowires [J].
Gong, Shu ;
Schwalb, Willem ;
Wang, Yongwei ;
Chen, Yi ;
Tang, Yue ;
Si, Jye ;
Shirinzadeh, Bijan ;
Cheng, Wenlong .
NATURE COMMUNICATIONS, 2014, 5
[28]   A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids [J].
Guo, Hengyu ;
Pu, Xianjie ;
Chen, Jie ;
Meng, Yan ;
Yeh, Min-Hsin ;
Liu, Guanlin ;
Tang, Qian ;
Chen, Baodong ;
Liu, Di ;
Qi, Song ;
Wu, Changsheng ;
Hu, Chenguo ;
Wang, Jie ;
Wang, Zhong Lin .
SCIENCE ROBOTICS, 2018, 3 (20)
[29]   Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care [J].
Guo, Rui ;
Fang, Yunsheng ;
Wang, Zhaosu ;
Libanori, Alberto ;
Xiao, Xiao ;
Wan, Dong ;
Cui, Xiaojing ;
Sang, Shengbo ;
Zhang, Wendong ;
Zhang, Hulin ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (35)
[30]   Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion [J].
Guo, Xinge ;
He, Tianyiyi ;
Zhang, Zixuan ;
Luo, Anxin ;
Wang, Fei ;
Ng, Eldwin J. ;
Zhu, Yao ;
Liu, Huicong ;
Lee, Chengkuo .
ACS NANO, 2021, 15 (12) :19054-19069