Radiomics Analysis of Diffusion-Weighted Imaging and Long-Term Unfavorable Outcomes Risk for Acute Stroke

被引:18
作者
Jiang, Liang [3 ]
Miao, Zhengfei [3 ]
Chen, Huiyou [3 ]
Geng, Wen [3 ]
Yong, Wei [3 ]
Chen, Yu-Chen [3 ]
Zhang, Hong [4 ]
Duan, Shaofeng [5 ]
Yin, Xindao [1 ,3 ]
Zhang, Zhiqiang [2 ,6 ]
机构
[1] Nanjing Med Univ, Nanjing Hosp 1, Dept Radiol, 68 Changle Rd, Nanjing 210006, Peoples R China
[2] Med Sch Nanjing Univ, Affiliated Jinling Hosp, Dept Radiol, Nanjing 210000, Peoples R China
[3] Nanjing Med Univ, Nanjing Hosp 1, Dept Radiol, Nanjing, Peoples R China
[4] Nanjing Med Univ, Dept Radiol, Affiliated Jiangning Hosp, Nanjing, Peoples R China
[5] GE Healthcare, Precis Hlth Institution, Wuxi, Peoples R China
[6] Nanjing Univ, Affiliated Jinling Hosp, Dept Radiol, Med Sch, Nanjing 210000, Peoples R China
关键词
infarction; ischemic stroke; magnetic resonance imaging; prognosis; risk factors; ISCHEMIC-STROKE; CLASSIFICATION;
D O I
10.1161/STROKEAHA.122.040418
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Diffusion-weighted imaging radiomics could be used as prognostic biomarkers in acute ischemic stroke. We aimed to identify a clinical and diffusion-weighted imaging radiomics model for individual unfavorable outcomes risk assessment in acute ischemic stroke. Methods: A total of 1716 patients with acute ischemic stroke from 2 centers were divided into a training cohort and a validation cohort. Patient outcomes were measured with the modified Rankin Scale score. An unfavorable outcome was defined as a modified Rankin Scale score greater than 2. The primary end point was all-cause mortality or outcomes 1 year after stroke. The MRI-DRAGON score was calculated based on previous publications. We extracted and selected the infarct features on diffusion-weighted imaging to construct a radiomic signature. The clinic-radiomics signature was built by measuring the Cox proportional risk regression score (CrrScore) and compared with the MRI-DRAGON score and the ClinicScore. CrrScore model performance was estimated by 1-year unfavorable outcomes prediction. Results: A high radiomic signature predicted a higher probability of unfavorable outcomes than a low radiomic signature in the training (hazard ratio, 3.19 [95% CI, 2.51-4.05]; P<0.0001) and validation (hazard ratio, 3.25 [95% CI, 2.20-4.80]; P<0.0001) cohorts. The diffusion-weighted imaging Alberta Stroke Program Early CT Score, age, glucose level before therapy, National Institutes of Health Stroke Scale score on admission, glycated hemoglobin, radiomic signature, hemorrhagic infarction, and malignant cerebral edema were associated with an unfavorable outcomes risk after multivariable adjustment. A CrrScore nomogram was developed to predict outcomes and had the best performance in the training (area under the curve, 0.862) and validation cohorts (area under the curve, 0.858). The CrrScore model time-dependent areas under the curve of the probability of unfavorable outcomes at 1 year in the training and validation cohorts were 0.811 and 0.801, respectively. Conclusions: The CrrScore model allows the accurate prediction of patients with acute ischemic stroke outcomes and can potentially guide rehabilitation therapies for patients with different risks of unfavorable outcomes. [GRAPHICS] .
引用
收藏
页码:488 / 498
页数:11
相关论文
共 31 条
[11]   A Nomogram Model to Predict Malignant Cerebral Edema in Ischemic Stroke Patients Treated with Endovascular Thrombectomy: An Observational Study [J].
Du, Mingyang ;
Huang, Xianjun ;
Li, Shun ;
Xu, Lili ;
Yan, Bin ;
Zhang, Yi ;
Wang, Huaiming ;
Liu, Xinfeng .
NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2020, 16 :2913-2920
[12]   Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials [J].
Emberson, Jonathan ;
Lees, Kennedy R. ;
Lyden, Patrick ;
Blackwell, Lisa ;
Albers, Gregory ;
Bluhmki, Erich ;
Brott, Thomas ;
Cohen, Geoff ;
Davis, Stephen ;
Donnan, Geoffrey ;
Grotta, James ;
Howard, George ;
Kaste, Markku ;
Koga, Masatoshi ;
von Kummer, Ruediger ;
Lansberg, Maarten ;
Lindley, Richard I. ;
Murray, Gordon ;
Olivot, Jean Marc ;
Parsons, Mark ;
Tilley, Barbara ;
Toni, Danilo ;
Toyoda, Kazunori ;
Wahlgren, Nils ;
Wardlaw, Joanna ;
Whiteley, William ;
del Zoppo, Gregory J. ;
Baigent, Colin ;
Sandercock, Peter ;
Hacke, Werner .
LANCET, 2014, 384 (9958) :1929-1935
[13]   RETRACTED: Predictive Value of CT Perfusion Imaging on the Basis of Automatic Segmentation Algorithm to Evaluate the Collateral Blood Flow Status on the Outcome of Reperfusion Therapy for Ischemic Stroke (Retracted Article) [J].
Gong, Qingsong ;
Yu, Botao ;
Wang, Mengjie ;
Chen, Min ;
Xu, Haowen ;
Gao, Jianbo .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
[14]   Genetic susceptibility to cerebrovascular disease: A systematic review [J].
Griessenauer, Christoph J. ;
Farrell, Sean ;
Sarkar, Atom ;
Zand, Ramin ;
Abedi, Vida ;
Holland, Neil ;
Michael, Andrew ;
Cummings, Christopher L. ;
Metpally, Raghu ;
Carey, David J. ;
Goren, Oded ;
Martin, Neil ;
Hendrix, Philipp ;
Schirmer, Clemens M. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2018, 38 (11) :1853-1871
[15]   Predictors for affected stroke territory and outcome of acute stroke treatments are different for posterior versus anterior circulation stroke [J].
Handelsmann, H. ;
Herzog, L. ;
Kulcsar, Z. ;
Luft, A. R. ;
Wegener, S. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[16]   Early Neurological Change After Ischemic Stroke Is Associated With 90-Day Outcome [J].
Heitsch, Laura ;
Ibanez, Laura ;
Carrera, Caty ;
Binkley, Michael M. ;
Strbian, Daniel ;
Tatlisumak, Turgut ;
Bustamante, Alejandro ;
Ribo, Marc ;
Molina, Carlos ;
Davalos, Antoni ;
Lopez-Cancio, Elena ;
Munoz-Narbona, Lucia ;
Soriano-Tarraga, Carol ;
Giralt-Steinhauer, Eva ;
Obach, Victor ;
Slowik, Agnieszka ;
Pera, Joanna ;
Lapicka-Bodzioch, Katarzyna ;
Derbisz, Justyna ;
Sobrino, Tomas ;
Castillo, Jose ;
Campos, Francisco ;
Rodriguez-Castro, Emilio ;
Arias-Rivas, Susana ;
Segura, Tomas ;
Serrano-Heras, Gemma ;
Vives-Bauza, Cristofol ;
Diaz-Navarro, Rosa ;
Tur, Silva ;
Jimenez, Carmen ;
Marti-Fabregas, Joan ;
Delgado-Mederos, Raquel ;
Arenillas, Juan ;
Krupinski, Jerzy ;
Cullell, Natalia ;
Torres-Aguila, Nuria P. ;
Muino, Elena ;
Carcel-Marquez, Jara ;
Moniche, Francisco ;
Cabezas, Juan A. ;
Ford, Andria L. ;
Dhar, Rajat ;
Roquer, Jaume ;
Khatri, Pooja ;
Jimenez-Conde, Jordi ;
Fernandez-Cadenas, Israel ;
Montaner, Joan ;
Rosand, Jonathan ;
Cruchaga, Carlos ;
Lee, Jin-Moo .
STROKE, 2021, 52 (01) :132-141
[17]   Predictive value of perfusion weighted imaging for early new lesions after stroke patients receive endovascular treatment [J].
Jiang, Liang ;
Ai, Zhongping ;
Geng, Wen ;
Chen, Huiyou ;
Zhao, Boxiang ;
Su, Haobo ;
Yin, Xindao ;
Chen, Yu-Chen .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (08) :3643-3654
[18]   Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke [J].
Kim, Gab Seok ;
Yang, Li ;
Zhang, Guoqi ;
Zhao, Honggang ;
Selim, Magdy ;
McCullough, Louise D. ;
Kluk, Michael J. ;
Sanchez, Teresa .
NATURE COMMUNICATIONS, 2015, 6
[19]   Mortality, Recurrence, and Dependency Rates Are Higher after Acute Ischemic Stroke in Elderly Patients with Diabetes Compared to Younger Patients [J].
Long, Xue ;
Lou, Yongzhong ;
Gu, Hongfei ;
Guo, Xiaofei ;
Wang, Tao ;
Zhu, Yanxia ;
Zhao, Wenjuan ;
Ning, Xianjia ;
Li, Bin ;
Wang, Jinghua ;
An, Zhongping .
FRONTIERS IN AGING NEUROSCIENCE, 2016, 8
[20]   Introduction to Radiomics [J].
Mayerhoefer, Marius E. ;
Materka, Andrzej ;
Langs, Georg ;
Haggstrom, Ida ;
Szczypinski, Piotr ;
Gibbs, Peter ;
Cook, Gary .
JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (04) :488-495