Radiomics Analysis of Diffusion-Weighted Imaging and Long-Term Unfavorable Outcomes Risk for Acute Stroke

被引:18
作者
Jiang, Liang [3 ]
Miao, Zhengfei [3 ]
Chen, Huiyou [3 ]
Geng, Wen [3 ]
Yong, Wei [3 ]
Chen, Yu-Chen [3 ]
Zhang, Hong [4 ]
Duan, Shaofeng [5 ]
Yin, Xindao [1 ,3 ]
Zhang, Zhiqiang [2 ,6 ]
机构
[1] Nanjing Med Univ, Nanjing Hosp 1, Dept Radiol, 68 Changle Rd, Nanjing 210006, Peoples R China
[2] Med Sch Nanjing Univ, Affiliated Jinling Hosp, Dept Radiol, Nanjing 210000, Peoples R China
[3] Nanjing Med Univ, Nanjing Hosp 1, Dept Radiol, Nanjing, Peoples R China
[4] Nanjing Med Univ, Dept Radiol, Affiliated Jiangning Hosp, Nanjing, Peoples R China
[5] GE Healthcare, Precis Hlth Institution, Wuxi, Peoples R China
[6] Nanjing Univ, Affiliated Jinling Hosp, Dept Radiol, Med Sch, Nanjing 210000, Peoples R China
关键词
infarction; ischemic stroke; magnetic resonance imaging; prognosis; risk factors; ISCHEMIC-STROKE; CLASSIFICATION;
D O I
10.1161/STROKEAHA.122.040418
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Diffusion-weighted imaging radiomics could be used as prognostic biomarkers in acute ischemic stroke. We aimed to identify a clinical and diffusion-weighted imaging radiomics model for individual unfavorable outcomes risk assessment in acute ischemic stroke. Methods: A total of 1716 patients with acute ischemic stroke from 2 centers were divided into a training cohort and a validation cohort. Patient outcomes were measured with the modified Rankin Scale score. An unfavorable outcome was defined as a modified Rankin Scale score greater than 2. The primary end point was all-cause mortality or outcomes 1 year after stroke. The MRI-DRAGON score was calculated based on previous publications. We extracted and selected the infarct features on diffusion-weighted imaging to construct a radiomic signature. The clinic-radiomics signature was built by measuring the Cox proportional risk regression score (CrrScore) and compared with the MRI-DRAGON score and the ClinicScore. CrrScore model performance was estimated by 1-year unfavorable outcomes prediction. Results: A high radiomic signature predicted a higher probability of unfavorable outcomes than a low radiomic signature in the training (hazard ratio, 3.19 [95% CI, 2.51-4.05]; P<0.0001) and validation (hazard ratio, 3.25 [95% CI, 2.20-4.80]; P<0.0001) cohorts. The diffusion-weighted imaging Alberta Stroke Program Early CT Score, age, glucose level before therapy, National Institutes of Health Stroke Scale score on admission, glycated hemoglobin, radiomic signature, hemorrhagic infarction, and malignant cerebral edema were associated with an unfavorable outcomes risk after multivariable adjustment. A CrrScore nomogram was developed to predict outcomes and had the best performance in the training (area under the curve, 0.862) and validation cohorts (area under the curve, 0.858). The CrrScore model time-dependent areas under the curve of the probability of unfavorable outcomes at 1 year in the training and validation cohorts were 0.811 and 0.801, respectively. Conclusions: The CrrScore model allows the accurate prediction of patients with acute ischemic stroke outcomes and can potentially guide rehabilitation therapies for patients with different risks of unfavorable outcomes. [GRAPHICS] .
引用
收藏
页码:488 / 498
页数:11
相关论文
共 31 条
[1]   CLASSIFICATION OF SUBTYPE OF ACUTE ISCHEMIC STROKE - DEFINITIONS FOR USE IN A MULTICENTER CLINICAL-TRIAL [J].
ADAMS, HP ;
BENDIXEN, BH ;
KAPPELLE, LJ ;
BILLER, J ;
LOVE, BB ;
GORDON, DL ;
MARSH, EE ;
KASE, CS ;
WOLF, PA ;
BABIKIAN, VL ;
LICATAGEHR, EE ;
ALLEN, N ;
BRASS, LM ;
FAYAD, PB ;
PAVALKIS, FJ ;
WEINBERGER, JM ;
TUHRIM, S ;
RUDOLPH, SH ;
HOROWITZ, DR ;
BITTON, A ;
MOHR, JP ;
SACCO, RL ;
CLAVIJO, M ;
ROSENBAUM, DM ;
SPARR, SA ;
KATZ, P ;
KLONOWSKI, E ;
CULEBRAS, A ;
CAREY, G ;
MARTIR, NI ;
FICARRA, C ;
HOGAN, EL ;
CARTER, T ;
GURECKI, P ;
MUNTZ, BK ;
RAMIREZLASSEPAS, M ;
TULLOCH, JW ;
QUINONES, MR ;
MENDEZ, M ;
ZHANG, SM ;
ALA, T ;
JOHNSTON, KC ;
ANDERSON, DC ;
TARREL, RM ;
NANCE, MA ;
BUDLIE, SR ;
DIERICH, M ;
HELGASON, CM ;
HIER, DB ;
SHAPIRO, RA .
STROKE, 1993, 24 (01) :35-41
[2]   MT-DRAGON score for outcome prediction in acute ischemic stroke treated by mechanical thrombectomy within 8 hours [J].
Ben Hassen, Wagih ;
Raynaud, Nicolas ;
Bricout, Nicolas ;
Boulouis, Gregoire ;
Legrand, Laurence ;
Ferrigno, Marc ;
Kazemi, Apolline ;
Bretzner, Martin ;
Soize, Sebastien ;
Farhat, Wassim ;
Seners, Pierre ;
Turc, Guillaume ;
Zuber, Mathieu ;
Oppenheim, Catherine ;
Cordonnier, Charlotte ;
Naggara, Olivier ;
Henon, Hilde .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (03) :246-251
[3]   Hyperglycemia is associated with more severe cytotoxic injury after stroke [J].
Bevers, Matthew B. ;
Vaishnav, Neil H. ;
Pham, Ly ;
Battey, Thomas W. K. ;
Kimberly, W. Taylor .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (07) :2577-2583
[4]   Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning [J].
Brugnara, Gianluca ;
Neuberger, Ulf ;
Mahmutoglu, Mustafa A. ;
Foltyn, Martha ;
Herweh, Christian ;
Nagel, Simon ;
Schonenberger, Silvia ;
Heiland, Sabine ;
Ulfert, Christian ;
Ringleb, Peter Arthur ;
Bendszus, Martin ;
Mohlenbruch, Markus A. ;
Pfaff, Johannes A. R. ;
Vollmuth, Philipp .
STROKE, 2020, 51 (12) :3541-3551
[5]   Imaging Markers of Brain Frailty and Outcome in Patients With Acute Ischemic Stroke [J].
Bu, Ning ;
Khlif, Mohamed Salah ;
Lemmens, Robin ;
Wouters, Anke ;
Fiebach, Jochen B. ;
Chamorro, Angel ;
Ringelstein, E. Bernd ;
Norrving, Bo ;
Laage, Rico ;
Grond, Martin ;
Wilms, Guido ;
Brodtmann, Amy ;
Thijs, Vincent .
STROKE, 2021, 52 (03) :1004-1011
[6]   Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data [J].
Campbell, Bruce C. V. ;
Majoie, Charles B. L. M. ;
Albers, Gregory W. ;
Menon, Bijoy K. ;
Yassi, Nawaf ;
Sharma, Gagan ;
van Zwam, Wim H. ;
van Oostenbrugge, Robert J. ;
Demchuk, Andrew M. ;
Guillemin, Francis ;
White, Philip ;
Davalos, Antoni ;
van der Lugt, Aad ;
Butcher, Kenneth S. ;
Cherifi, Aboubaker ;
Marquering, Henk A. ;
Cloud, Geoffrey ;
Macho Fernandez, Juan M. ;
Madigan, Jeremy ;
Oppenheim, Catherine ;
Donnan, Geoffrey A. ;
Roos, Yvo B. W. E. M. ;
Shankar, Jai ;
Lingsma, Hester ;
Bonafe, Alain ;
Raoult, Helene ;
Hernandez-Perez, Maria ;
Bharatha, Aditya ;
Jahan, Reza ;
Jansen, Olav ;
Richard, Sebastien ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Soudant, Marc ;
Aja, Lucia ;
Davis, Stephen M. ;
Krings, Timo ;
Tisserand, Marie ;
San Roman, Luis ;
Tomasello, Alejandro ;
Beumer, Debbie ;
Brown, Scott ;
Liebeskind, David S. ;
Bracard, Serge ;
Muir, Keith W. ;
Dippel, Diederik W. J. ;
Goyal, Mayank ;
Saver, Jeffrey L. ;
Jovin, Tudor G. ;
Hill, Michael D. .
LANCET NEUROLOGY, 2019, 18 (01) :46-55
[7]   Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges [J].
Chen, Qian ;
Xia, Tianyi ;
Zhang, Mingyue ;
Xia, Nengzhi ;
Liu, Jinjin ;
Yang, Yunjun .
AGING AND DISEASE, 2021, 12 (01) :143-154
[8]   In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core [J].
Copen, William A. ;
Yoo, Albert J. ;
Rost, Natalia S. ;
Morais, Livia T. ;
Schaefer, Pamela W. ;
Gonzalez, R. Gilberto ;
Wu, Ona .
PLOS ONE, 2017, 12 (11)
[9]  
Cui H, 2018, IEEE ENG MED BIO, P722, DOI 10.1109/EMBC.2018.8512291
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845