Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems

被引:1
作者
Yin, Zongbin [1 ]
He, Shengnan [2 ]
Chen, Zhijing [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Mean Li-Yorke chaos; Mean sensitivity; Non-autonomous discrete systems; DISTRIBUTIONAL CHAOS; STRONGER FORMS; DYNAMICS; OPERATORS; SEQUENCE;
D O I
10.1007/s10883-022-09599-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, mean Li-Yorke chaos and mean sensitivity are investigated in non-autonomous discrete systems (X, f(1,infinity)), where f(1,infinity )= { f(i)}(i >= 1) is a sequence of self-maps on a metric space X. It is shown that mean Li-Yorke chaos is preserved under iteration for a non-autonomous discrete system with certain continuity. Moreover, sensitivity, Banach mean sensitivity and mean sensitivity of non-autonomous linear discrete systems are characterized, respectively. We provide sufficient conditions under which a mean sensitive non-autonomous discrete system is mean Li-Yorke chaotic.
引用
收藏
页码:245 / 262
页数:18
相关论文
共 48 条
  • [1] Weak mixing and chaos in nonautonomous discrete systems
    Balibrea, Francisco
    Oprocha, Piotr
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1135 - 1141
  • [2] Bayart F, 2009, CAMB TRACT MATH, P1
  • [3] Mean Li-Yorke chaos in Banach spaces
    Bernardes, N. C., Jr.
    Bonilla, A.
    Peris, A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
  • [4] Distributional chaos for operators on Banach spaces
    Bernardes, N. C., Jr.
    Bonilla, A.
    Peris, A.
    Wu, X.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 797 - 821
  • [5] Distributional chaos for linear operators
    Bernardes, N. C., Jr.
    Bonilla, A.
    Mueller, V.
    Peris, A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) : 2143 - 2163
  • [6] Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
  • [7] Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue
    Coutinho, F. A. B.
    Burattini, M. N.
    Lopez, L. F.
    Massad, E.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) : 2263 - 2282
  • [8] Downarowicz T, 2014, P AM MATH SOC, V142, P137
  • [9] Chaos in nonautonomous discrete dynamical systems
    Dvorakova, J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) : 4649 - 4652
  • [10] On a problem of iteration invariants for distributional chaos
    Dvorakova, J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 785 - 787