An Evolutionary Multitasking Method for High-Dimensional Receiver Operating Characteristic Convex Hull Maximization

被引:3
作者
Cheng, Fan [1 ,2 ]
Shu, Shengda [3 ]
Zhang, Lei [1 ,2 ]
Tan, Ming [4 ]
Qiu, Jianfeng [1 ,2 ]
机构
[1] Anhui Univ, Inst Informat Mat, Sch Artificial Intelligence, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Artificial Intelligence, Intelligent Sensing Lab Anhui Prov, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[4] Hefei Univ, Sch Artificial Intelligence & Big Data, Hefei 230601, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Evolutionary computation; Evolutionary multitasking; ROC convex hull; multi-objective evolutionary algorithm; knowledge transfer; classification; OPTIMIZATION; ALGORITHM; CLASSIFICATION; CLASSIFIERS; AREA;
D O I
10.1109/TETCI.2024.3354101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maximizing receiver operating characteristic convex hull (ROCCH) is a hot research topic of binary classification, since it can obtain good classifiers under either balanced or imbalanced situation. Recently, evolutionary algorithms (EAs) especially multi-objective evolutionary algorithms (MOEAs) have shown their competitiveness in addressing the problem of ROCCH maximization. Thus, a series of MOEAs with promising performance have been proposed to tackle it. However, designing a MOEA for high-dimensional ROOCH maximization is much more challenging due to the "curse of dimension". To this end, in this paper, an evolutionary multitasking approach (termed as EMT-ROCCH) is proposed, where a low-dimensional ROCCH maximization task T-a is constructed to assist the original high-dimensional task T-o. Specifically, in EMT-ROCCH, a low-dimensional assisted task T-a is firstly created. Then, two populations, P-a and P-o, are used to evolve tasks T-a and T-o, respectively. During the evolution, a knowledge transfer from P-a to P-o is designed to transfer the useful knowledge from P-a to accelerate the convergence of P-o. Moreover, a knowledge transfer from P-o to P-a is developed to utilize the useful knowledge in P-o to repair the individuals in P-a, aiming to avoid P-a being trapped into the local optima. Experiment results on 12 high-dimensional datasets have shown that compared with the state-of-the-arts, the proposed EMT-ROCCH could achieve ROCCH with higher quality.
引用
收藏
页码:1699 / 1713
页数:15
相关论文
共 50 条
  • [41] A Local Complexity Based Combination Method for Decision Forests Trained with High-dimensional Data
    Campos, Yoisel
    Morell, Carlos
    Ferri, Francesc J.
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 194 - 199
  • [42] A Simple Method for Testing Independence of High-Dimensional Random Vectors
    Jakimauskas, Gintautas
    Radavicius, Marijus
    Susinskas, Jurgis
    AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (01) : 101 - 108
  • [43] Evolutionary Cellular Automata Based Approach to High-dimensional Image Segmentation for GPL Projection
    Priego, B.
    Duro, R. J.
    Lopez-Fandino, J.
    Heras, D. B.
    Arguello, F.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1593 - 1600
  • [44] A filter-wrapper model for high-dimensional feature selection based on evolutionary computation
    Hu, Pei
    Zhu, Jiulong
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [45] MPEA-FS: A decomposition-based multi-population evolutionary algorithm for high-dimensional feature selection
    Li, Wangwang
    Chai, Zhengyi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [46] Efficient Generalized Surrogate-Assisted Evolutionary Algorithm for High-Dimensional Expensive Problems
    Cai, Xiwen
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 365 - 379
  • [47] An Enhanced Evolutionary Based Feature Selection Approach Using Grey Wolf Optimizer for the Classification of High-dimensional Biological Data
    Thaher, Thaer
    Awad, Mohammed
    Aldasht, Mohammed
    Sheta, Alaa
    Turabieh, Hamza
    Chantar, Hamouda
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (05) : 499 - 539
  • [48] A binary individual search strategy-based bi-objective evolutionary algorithm for high-dimensional feature selection
    Li, Tao
    Zhan, Zhi-Hui
    Xu, Jiu-Cheng
    Yang, Qiang
    Ma, Yuan-Yuan
    INFORMATION SCIENCES, 2022, 610 : 651 - 673
  • [49] Decision Region Connectivity Analysis: A Method for Analyzing High-Dimensional Classifiers
    Ofer Melnik
    Machine Learning, 2002, 48 : 321 - 351
  • [50] ROC-Based Utility Function Maximization for Feature Selection and Classification with Applications to High-Dimensional Protease Data
    Liu, Zhenqiu
    Tan, Ming
    BIOMETRICS, 2008, 64 (04) : 1155 - 1161