Direct data-driven state-feedback control of general nonlinear systems

被引:4
|
作者
Verhoek, Chris [1 ]
Koelewijn, Patrick J. W. [1 ]
Haesaert, Sofie [1 ]
Toth, Roland [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Control Syst Grp, Eindhoven, Netherlands
[2] Inst Comp Sci & Control, Budapest, Hungary
基金
欧洲研究理事会;
关键词
Data-driven Control; Nonlinear Systems; Linear Parameter-Varying Systems;
D O I
10.1109/CDC49753.2023.10384139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through the use of the Fundamental Lemma for linear systems, a direct data-driven state-feedback control synthesis method is presented for a rather general class of nonlinear (NL) systems. The core idea is to develop a data-driven representation of the so-called velocity-form, i.e., the time-difference dynamics, of the NL system, which is shown to admit a direct linear parameter-varying (LPV) representation. By applying the LPV extension of the Fundamental Lemma in this velocity domain, a state-feedback controller is directly synthesized to provide asymptotic stability and dissipativity of the velocity-form. By using realization theory, the synthesized controller is realized as a NL state-feedback law for the original unknown NL system with guarantees of universal shifted stability and dissipativity, i.e., stability and dissipativity w.r.t. any (forced) equilibrium point, of the closed-loop behavior. This is achieved by the use of a single sequence of data from the system and a predefined basis function set to span the scheduling map. The applicability of the results is demonstrated on a simulation example of an unbalanced disc.
引用
收藏
页码:3688 / 3693
页数:6
相关论文
共 50 条
  • [1] Gaussian inference for data-driven state-feedback design of nonlinear systems
    Martin, Tim
    Schon, Thomas B.
    Allgoewer, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 4796 - 4803
  • [2] Robust data-driven state-feedback design
    Berberich, Julian
    Koch, Anne
    Scherer, Carsten W.
    Allgoewer, Frank
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1532 - 1538
  • [3] Direct Data-Driven Computation of Polytopic Robust Control Invariant Sets and State-Feedback Controllers
    Mejari, Manas
    Gupta, Ankit
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 590 - 595
  • [4] State-Feedback Event-Triggered Control Using Data-Driven Methods
    Matsuda, Yuma
    Kato, Shuichi
    Wakasa, Yuji
    Adachi, Ryosuke
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 1287 - 1292
  • [5] STATE-FEEDBACK CONTROL OF NONLINEAR-SYSTEMS
    ZAK, SH
    MACCARLEY, CA
    INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (05) : 1497 - 1514
  • [6] Data-driven nonlinear predictive control for feedback linearizable systems
    Alsalti, Mohammad
    Lopez, Victor G.
    Berberich, Julian
    Allgoewer, Frank
    Mueller, Matthias A.
    IFAC PAPERSONLINE, 2023, 56 (02): : 617 - 624
  • [7] Data-Driven Feedback Domination Control of a Class of Nonlinear Systems
    Li, Jinjiang
    Hu, Kaijian
    Liu, Tao
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1739 - 1744
  • [8] Data-driven MIMO model-free reference tracking control with nonlinear state-feedback and fractional order controllers
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    APPLIED SOFT COMPUTING, 2018, 73 : 992 - 1003
  • [9] Direct data-driven LPV control of nonlinear systems: An experimental result
    Verhoek, Chris
    Abbas, Hossam S.
    Toth, Roland
    IFAC PAPERSONLINE, 2023, 56 (02): : 2263 - 2268
  • [10] Data-driven control of nonlinear systems: An on-line direct approach
    Tanaskovic, Marko
    Fagiano, Lorenzo
    Novara, Carlo
    Morari, Manfred
    AUTOMATICA, 2017, 75 : 1 - 10