A Survey of Vectorization Methods in Topological Data Analysis

被引:23
作者
Ali, Dashti [1 ]
Asaad, Aras [1 ,2 ]
Jimenez, Maria-Jose [3 ,4 ]
Nanda, Vidit [5 ]
Paluzo-Hidalgo, Eduardo [6 ]
Soriano-Trigueros, Manuel [6 ,7 ]
机构
[1] Koya Univ, KO50 1001, Koysinjaq, Kurdistan, Iraq
[2] Univ Buckingham, Sch Comp, Buckingham MK18 1EG, England
[3] Univ Oxford, Mathemat Inst, Oxford OX1 3AZ, England
[4] Univ Seville, Dept Matemat Aplicada 1, Seville 41004, Spain
[5] Univ Oxford, Math Inst, Oxford OX1 3AZ, England
[6] Univ Seville, Dept Matemat Aplicada 1, Seville 41004, Spain
[7] IST Austria, A-3400 Klosterneuburg, Austria
基金
英国工程与自然科学研究理事会;
关键词
Barcodes; persistent homology; topological data analysis; vectorization methods; PERSISTENCE; NETWORK;
D O I
10.1109/TPAMI.2023.3308391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.
引用
收藏
页码:14069 / 14080
页数:12
相关论文
共 63 条
[1]  
Adams H, 2017, J MACH LEARN RES, V18
[2]   THE RING OF ALGEBRAIC FUNCTIONS ON PERSISTENCE BAR CODES [J].
Adcock, Aaron ;
Carlsson, Erik ;
Carlsson, Gunnar .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2016, 18 (01) :381-402
[3]  
Aggarwal C. C., 2018, Neural Networks and Deep Learning
[4]  
[Anonymous], 2022, GUDHI The GUDHI Project User and Reference Manual
[5]  
Armstrong MA, 1983, BASIC TOPOLOGY
[6]   Persistent Homology for Breast Tumor Classification Using Mammogram Scans [J].
Asaad, Aras ;
Ali, Dashti ;
Majeed, Taban ;
Rashid, Rasber .
MATHEMATICS, 2022, 10 (21)
[7]   On the stability of persistent entropy and new summary functions for topological data analysis [J].
Atienza, Nieves ;
Gonzalez-Diaz, Rocio ;
Soriano-Trigueros, Manuel .
PATTERN RECOGNITION, 2020, 107
[8]   A Comparative Study of Machine Learning Methods for Persistence Diagrams [J].
Barnes, Danielle ;
Polanco, Luis ;
Perea, Jose A. .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
[9]  
Berry E, 2020, Journal of Applied and Computational Topology, V4, P211, DOI [10.1007/s41468-020-00048-w, DOI 10.1007/S41468-020-00048-W]
[10]   The Accumulated Persistence Function, a New Useful Functional Summary Statistic for Topological Data Analysis, With a View to Brain Artery Trees and Spatial Point Process Applications [J].
Biscio, Christophe A. N. ;
Moller, Jesper .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) :671-681