Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries

被引:25
作者
Gautam, Rajeev K. [1 ]
Wang, Xiao [1 ]
Lashgari, Amir [1 ]
Sinha, Soumalya [1 ]
McGrath, Jack [1 ]
Siwakoti, Rabin [1 ]
Jiang, Jianbing Jimmy [1 ]
机构
[1] Univ Cincinnati, Dept Chem, POB 210172, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
LIQUID ELECTROLYTES; STORAGE;
D O I
10.1038/s41467-023-40374-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium-based nonaqueous redox flow batteries (LRFBs) are alternative systems to conventional aqueous redox flow batteries because of their higher operating voltage and theoretical energy density. However, the use of ion-selective membranes limits the large-scale applicability of LRFBs. Here, we report high-voltage membrane-free LRFBs based on an all-organic biphasic system that uses Li metal anode and 2,4,6-tri-(1-cyclohexyloxy-4-imino-2,2,6,6-tetramethylpiperidine)-1,3,5-triazine (Tri-TEMPO), N-propyl phenothiazine (C3-PTZ), and tris(dialkylamino)cyclopropenium (CP) cathodes. Under static conditions, the Li parallel to Tri-TEMPO, Li parallel to C3-PTZ, and Li parallel to CP batteries with 0.5M redox-active material deliver capacity retentions of 98%, 98%, and 92%, respectively, for 100 cycles over similar to 55 days at the current density of 1 mA/cm(2) and a temperature of 27 degrees C. Moreover, the Li parallel to Tri-TEMPO (0.5 M) flow battery delivers an initial average cell discharge voltage of 3.45 V and an energy density of similar to 33Wh/L. This flow battery also demonstrates 81% of capacity for 100 cycles over similar to 45 days with average Coulombic efficiency of 96% and energy efficiency of 82% at the current density of 1.5mA/cm(2) and at a temperature of 27 degrees C.
引用
收藏
页数:12
相关论文
共 67 条
[11]   Fluoride-ion solvation in non-aqueous electrolyte solutions [J].
Davis, Victoria K. ;
Munoz, Stephen ;
Kim, Jeongmin ;
Bates, Christopher M. ;
Momcilovic, Nebojsa ;
Billings, Keith J. ;
Miller, Thomas F., III ;
Grubbs, Robert H. ;
Jones, Simon C. .
MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (12) :2721-2727
[12]   Comparing the self-assembly processes of two redox-active exTTF-based regioisomer ligands [J].
Dekhtiarenko, Maksym ;
Allain, Magali ;
Carre, Vincent ;
Aubriet, Frederic ;
Voitenko, Zoia ;
Salle, Marc ;
Goeb, Sebastien .
NEW JOURNAL OF CHEMISTRY, 2021, 45 (45) :21015-21019
[13]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[14]   Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage [J].
Emmett, Robert K. ;
Roberts, Mark E. .
JOURNAL OF POWER SOURCES, 2021, 506
[15]   Mitigating Ring-Opening to Develop Stable TEMPO Catholytes for pH-Neutral All-organic Redox Flow Batteries [J].
Fan, Hao ;
Wu, Wenda ;
Ravivarma, Mahalingam ;
Li, Hongbin ;
Hu, Bo ;
Lei, Jiafeng ;
Feng, Yangyang ;
Sun, Xiaohua ;
Song, Jiangxuan ;
Liu, Tianbiao Leo .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
[16]   Aqueous organic and redox-mediated redox flow batteries: a review [J].
Gentil, Solene ;
Reynard, Danick ;
Girault, Hubert H. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 :7-13
[17]   Effect of fluoroethylene carbonate additive on the low-temperature performance of lithium-ion batteries [J].
He, Han ;
Wang, Yue ;
Li, Meng ;
Qiu, Jingyi ;
Wen, Yuehua ;
Chen, Junhong .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 925
[18]   A Stable, Low Permeable TEMPO Catholyte for Aqueous Total Organic Redox Flow Batteries [J].
Hu, Bo ;
Hu, Maowei ;
Luo, Jian ;
Liu, T. Leo .
ADVANCED ENERGY MATERIALS, 2022, 12 (08)
[19]   Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage [J].
Hu, Bo ;
DeBruler, Camden ;
Rhodes, Zayn ;
Liu, T. Leo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1207-1214
[20]   Nonaqueous redox-flow batteries: features, challenges, and prospects [J].
Huang, Yan ;
Gu, Shuang ;
Yan, Yushan ;
Li, Sam Fong Yau .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 8 :105-113