Tunable electronic and optical properties of a type-II AlAs/GaS heterojunction: first-principles calculations

被引:7
作者
Wang, Jiaxin [1 ]
Xuan, Jinzhe [1 ]
Wei, Xing [1 ]
Zhang, Yan [1 ]
Fan, Jibin [1 ]
Ni, Lei [1 ]
Yang, Yun [1 ]
Liu, Jian [2 ]
Tian, Ye [3 ]
Wang, Xuqiang [1 ]
Yuan, Chongrong [1 ]
Duan, Li [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
[2] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
FIELD; HETEROSTRUCTURE; PHOTODETECTORS; PHOSPHORENE; DYNAMICS;
D O I
10.1039/d3ce00255a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the geometric structures and electron-optical properties of AlAs/GaS heterojunctions and Se-doped AlAs/GaS heterojunctions are calculated based on first-principles of density functional theory (DFT). At the same time, the influence of the AlAs layer's 5 degrees rotation stacking method on the AlAs/GaS heterojunction is discussed. The results show that the AlAs/GaS heterojunction is a type-II van der Waals heterojunction (vdWH) with a direct bandgap of 0.974 eV, and the Z-scheme electron transfer mechanism is more conducive to the separation of photogenerated electrons and holes. Both semiconductor-to-metal transitions can be achieved by applying an external electric field and strain. Under the action of an external electric field and uniaxial strain, AlAs/GaS maintains the type-II energy band alignment throughout the process. When biaxial strain is applied, the heterojunction is accompanied by a direct-indirect bandgap transition. It is worth mentioning that the optical absorption of the AlAs/GaS heterojunction is significantly higher than that of the two monolayers, and the absorption range is wider. The above characteristics indicate that the AlAs/GaS heterojunction has wider applications in fields such as photodetectors.
引用
收藏
页码:3812 / 3825
页数:14
相关论文
共 46 条
  • [1] Plasmonic WS2 Nanodiscs/Graphene van der Waals Heterostructure Photodetectors
    Alamri, Mohammed
    Gong, Maogang
    Cook, Brent
    Goul, Ryan
    Wu, Judy Z.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (36) : 33390 - 33398
  • [2] SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution
    Ali, Tariq
    Wang, Xianfu
    Tang, Kai
    Li, Qun
    Sajjad, Saman
    Khan, Shahid
    Farooqi, Sidra Anis
    Yan, Chenglin
    [J]. ELECTROCHIMICA ACTA, 2019, 300 : 45 - 52
  • [3] Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures
    Bafekry, A.
    Akgenc, B.
    Shayesteh, S. Farjami
    Mortazavi, B.
    [J]. APPLIED SURFACE SCIENCE, 2020, 505
  • [4] van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials
    Cheng, Hung-Chieh
    Wang, Gongmin
    Li, Dehui
    He, Qiyuan
    Yin, Anxiang
    Liu, Yuan
    Wu, Hao
    Ding, Mengning
    Huang, Yu
    Duan, Xiangfeng
    [J]. NANO LETTERS, 2016, 16 (01) : 367 - 373
  • [5] Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets
    Chitara, Basant
    Ya'akobovitz, Assaf
    [J]. NANOSCALE, 2018, 10 (27) : 13022 - 13027
  • [6] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    [J]. NANOMATERIALS, 2020, 10 (03)
  • [7] Van der Waal heterostructure based on BY(Y= As, P) and MX2 (M= Mo, W; X= S, Se) monolayers
    Din, H. U.
    Idrees, M.
    Alam, Q.
    Amin, B.
    [J]. APPLIED SURFACE SCIENCE, 2021, 568
  • [8] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [9] Graphene van der Waals heterostructures for high-performance photodetectors
    Geng, Huijuan
    Yuan, Di
    Yang, Zhi
    Tang, Zhenjie
    Zhang, Xiwei
    Yang, Kui
    Su, Yanjie
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (36) : 11056 - 11067
  • [10] Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    Grimme, Stefan
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) : 1787 - 1799