Weakly Convex Hop Dominating Sets in Graphs

被引:19
作者
Canoy Jr, Sergio R. [1 ,2 ]
Hassan, Javier A. [3 ]
机构
[1] MSU Iligan Inst Technol, Premier Res Inst Sci & Math, Coll Sci & Math, Ctr Graph Theory,Dept Math & Stat, Iligan 9200, Philippines
[2] MSU Iligan Inst Technol, Premier Res Inst Sci & Math, Ctr Math & Theoret Phys Sci, Iligan 9200, Philippines
[3] MSU Tawi Tawi Coll Technol & Oceanog, Coll Arts & Sci, Math & Sci Dept, Bongao, Tawi Tawi, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 02期
关键词
Weakly convex set; weakly convex hop dominating set; weakly convex hop domination number;
D O I
10.29020/nybg.ejpam.v16i2.4761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an undirected connected graph with vertex and edge sets V (G) and E(G), respectively. A set C C V (G) is called weakly convex hop dominating if for every two vertices x, y E C, there exists an x -y geodesic P(x, y) such that V (P(x, y)) C C and for every v E V(G)\C, there exists w E C such that dG(v, w) = 2. The minimum cardinality of a weakly convex hop dominating set of G, denoted by gamma wconh(G), is called the weakly convex hop domination number of G. In this paper, we introduce and initially investigate the concept of weakly convex hop domination. We show that every two positive integers a and b with 3 < a < b are realizable as the weakly convex hop domination number and convex hop domination number of some connected graph. Furthermore, we characterize the weakly convex hop dominating sets in some graphs under some binary operations.
引用
收藏
页码:1196 / 1211
页数:16
相关论文
共 24 条
[1]  
Ayyaswamy S., 2018, International Journal of Pure and Applied Mathematics, V119, P11465
[2]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[3]   Convex and isometric domination of (weak) dominating pair graphs [J].
Bresar, Bostjan ;
Gologranc, Tanja ;
Kos, Tim .
THEORETICAL COMPUTER SCIENCE, 2018, 730 :32-43
[4]  
Canoy S.R., 2014, Applied Mathematical Sciences, V8, P5737
[5]   Hop Dominating Sets in Graphs Under Binary Operations [J].
Canoy, Sergio R., Jr. ;
Mollejon, Reynaldo, V ;
Canoy, John Gabriel E. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04) :1455-1463
[6]  
Canoy SR, 2017, ADV APPL DISCRET MAT, V18, P179, DOI 10.17654/DM018020179
[7]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[8]  
Daniel T., 2015, APPL MATH SCI, V9, P5449
[9]   Convex Hop Domination in Graphs [J].
Hassan, Javier A. ;
Canoy Jr, Sergio R. ;
Saromines, Chrisley Jade .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01) :319-335
[10]   Hop Independent Hop Domination in Graphs [J].
Hassan, Javier A. ;
Canoy, Sergio R. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04) :1783-1796