Almost *-η-Ricci soliton on three-dimensional trans-Sasakian manifolds

被引:1
作者
Pavithra, R. C. [1 ]
Nagaraja, H. G. [1 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, Karnataka, India
关键词
*-Ricci soliton; *-eta-Ricci soliton; almost gradient *-eta-Ricci soliton; Jacobi-type vector field; REAL HYPERSURFACES; CONTACT;
D O I
10.1142/S0219887823501736
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we characterize three-dimensional trans-Sasakian manifolds of type (alpha,beta) admitting *-eta-Ricci-solitons and gradient almost *-eta-Ricci-solitons. First, we prove that a trans-Sasakian three-manifold of type (alpha,beta) admitting a *-eta-Ricci soliton reduces to a beta-Kenmostu manifold, provided potential vector field V is Jacobi along a geodesic of xi. Next, we show that the trans-Sasakian metric as a gradient almost *-eta-Ricci soliton is either flat or *-eta-Einstein or a beta-Kenmotsu manifold.
引用
收藏
页数:12
相关论文
共 24 条
[1]  
Blair D. E., 1977, Tohoku Math. J., V29, P319
[2]  
Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3_1
[3]   A CLASSIFICATION OF ALMOST CONTACT METRIC MANIFOLDS [J].
CHINEA, D ;
GONZALEZ, C .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 156 :15-36
[4]   RICCI SOLITONS AND REAL HYPERSURFACES IN A COMPLEX SPACE FORM [J].
Cho, Jong Taek ;
Kimura, Makoto .
TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (02) :205-212
[5]  
De U. C., 2003, Kyungpook Mathematical Journal, V43, P247
[6]  
De U.C., 2008, Extracta Math., V23, P265
[7]   Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds [J].
Deshmukh, Sharief .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :2951-2958
[8]   *-RICCI SOLITONS AND *-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS [J].
Dey, Dibakar ;
Majhi, Pradip .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02) :625-637
[9]   *-η-RICCI SOLITON WITHIN THE FRAMEWORK OF SASAKIAN MANIFOLD [J].
Dey, Santu ;
Roy, Soumendu .
JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2020, 18 (02) :163-181
[10]  
Ghosh A, 2023, PERIOD MATH HUNG, V86, P139, DOI 10.1007/s10998-022-00462-w