Diffusion-advection process modeling of organochlorine pesticides in rivers

被引:14
|
作者
Cardenas, S. [1 ]
Marquez, A. [1 ]
Guevara, E. [1 ]
机构
[1] Univ Carabobo, Hydrol & Environm Res Ctr, Naguanagua, Venezuela
来源
JOURNAL OF APPLIED WATER ENGINEERING AND RESEARCH | 2023年 / 11卷 / 01期
关键词
Organochlorine pesticides; organochlorine pesticide transport; organochlorine pesticide transformation; DEGRADATION; TRANSPORT; DDT; CONVERSION; KINETICS;
D O I
10.1080/23249676.2021.1982029
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper deals with the diffusion-advection process modeling of organochlorine pesticides (OCPs) dissolved in a topical river. The novelty consists of proposing mathematical expressions to estimate the physical coefficients (molecular diffusion, advective diffusion, partition) and biochemical coefficients (substrate utilization rate) of OCPs advection-diffusion processes combined to OCPs biochemical transformation processes. The OCPs involved were DDTs (p.p'-DDT, o.p'-DDT, p.p'-DDD, p.p'-DDE, o.p'-DDE) and DRINs (Aldrin, Dieldrin and Endrin). Four scenarios for simulating the OCPs transport were calibrated: (1) molecular diffusion, (2) biochemical transformation, (3) advection-diffusion and (4) a combination of advection-diffusion, biochemical transformation and sorption/desorption processes. The evaluated scenarios predicted with a good approach to the OCPs's spatio-temporal distribution with a prediction capability within an interval until 1.5 standard deviation with respect to the mean of difference between observed and simulated OCPs The scenario N degrees 4 associated to a coupled model offered a suitable prediction of processes for a tropical river.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Calibration of diffusion-advection process models for organochlorine pesticides in a tropical river
    Marquez-Romance, Adriana
    Cardenas-Izaguirre, Samuel
    Guevara-Perez, Edilberto
    Perez-Pacheco, Sergio
    ENVIRONMENTAL QUALITY MANAGEMENT, 2022, 31 (04) : 403 - 424
  • [2] AN INTEGRAL SOLUTION FOR THE DIFFUSION-ADVECTION EQUATION
    TAIGBENU, A
    LIGGETT, JA
    WATER RESOURCES RESEARCH, 1986, 22 (08) : 1237 - 1246
  • [3] DIFFUSION-ADVECTION MODELS FOR RADIOCARBON
    CRAIG, H
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1969, 50 (04): : 210 - &
  • [4] BLOW UP FOR A DIFFUSION-ADVECTION EQUATION
    ALIKAKOS, ND
    BATES, PW
    GRANT, CP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 113 : 181 - 190
  • [5] MODELING HETEROGENEOUS POPULATIONS OF THERMOSTATICALLY CONTROLLED LOADS USING DIFFUSION-ADVECTION PDES
    Moura, Scott
    Ruiz, Victor
    Bendtsen, Jan
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [7] Analytical solutions to a nonlinear diffusion-advection equation
    Pudasaini, Shiva P.
    Hajra, Sayonita Ghosh
    Kandel, Santosh
    Khattri, Khim B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):
  • [8] On the Fractional Diffusion-Advection Equation for Fluids and Plasmas
    Zimbardo, Gaetano
    Perri, Silvia
    FLUIDS, 2019, 4 (02)
  • [9] Exponential finite elements for diffusion-advection problems
    El-Zein, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (15) : 2086 - 2103
  • [10] A DIFFUSION-ADVECTION MODEL FOR Toxoplasma gondii PROPAGATION
    Gandica, Irene Duarte
    REVISTA DE INVESTIGACIONES-UNIVERSIDAD DEL QUINDIO, 2012, 23 (02): : 36 - 49