Seismic performance of precast concrete sandwich walls with bolt-steel plate connection

被引:1
|
作者
Ge, Qi [1 ]
Meng, Yongjie [1 ]
Ai, Jingsong [1 ]
Zuo, Wenhao [1 ]
Xiong, Feng [1 ]
Liu, Ye [1 ]
Dong, Na [1 ]
机构
[1] Sichuan Univ, Coll Architecture & Environm, MOE Key Lab Deep Earth Sci & Engn, Chengdu, Peoples R China
关键词
Precast Concrete Sandwich Wall; Bolt -steel plate connection; Cyclic loading; Seismic performance; UHPC; PULL-OUT BEHAVIOR; PRESTRESSED CONCRETE; COMPOSITE BEHAVIOR; FLEXURAL BEHAVIOR; PANELS; LOAD;
D O I
10.1016/j.engstruct.2023.117402
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The bolt-steel plate connection stands as a dry connection method in precast structures characterized by its simplicity, high efficiency, ease of assembly and disassembly, and environmental protection. Five precast concrete sandwich walls (PCSWs) with glass fiber-reinforced polymer (GFRP) to connect the interior and exterior concrete wythes were designed and tested to investigate the seismic performance of such walls under cyclic loads. Ultra-high performance concrete (UHPC) was used to strengthen the bolt-steel plate connection joint. This study investigated the effect of the sandwich wall between the two bolt-steel plate connection joints, opening, and UHPC on the seismic performance of PCSWs. The findings revealed that the sandwich wall between the two bolt-steel plate connection joints, UHPC, and the interface between UHPC and ordinary concrete had a significant influence on the failure modes, including four failure modes: shear failure of bolt-steel plate connection joint, concrete crushing at the wall toe and through-crack of the shear oblique cracks and horizontal joint, shear failure at the interface between the solid and sandwich walls, and shear failure typified by a "Keyway" configuration. The use of UHPC to strengthen the bolt-steel plate connection area could significantly improve the load-bearing capacity and peak drift ratio. Whether the sandwich wall was used in the non-bolt-steel plate connection area in the horizontal joint zone had minimal influence on both the load-bearing capacity and peak drift ratio. For the walls without UHPC strengthening, the ultimate load and ultimate drift ratio could be increased by using the sandwich wall between the two bolt-steel plate connection areas, however, it was the opposite when UHPC strengthening was used. The paper also compared the sandwich walls with the solid walls, and the results showed that the sandwich wall with bolt-steel plate connections had good seismic performance.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Experimental and numerical study on seismic performance of precast concrete hollow shear walls
    Zhang, Weijing
    Yang, Leigang
    Guo, Xiaotian
    Li, Aiying
    Qian, Jiaru
    Zhang, Yingbao
    ENGINEERING STRUCTURES, 2023, 291
  • [32] Experimental Study on Seismic Performance of Precast Concrete Shear Walls with Hybrid Connections
    Li, Zhijie
    Xu, Yongkang
    JOURNAL OF EARTHQUAKE ENGINEERING, 2023, 27 (15) : 4237 - 4259
  • [33] Seismic performance of precast concrete wall with vertical energy-dissipating connection
    Dang, Longji
    Liang, Shuting
    Zhu, Xiaojun
    Zhang, Ming
    Song, Yamin
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2021, 30 (02)
  • [34] An experimental study of the seismic behaviour of precast concrete shear walls with bolted-plate connections
    Pan, Guang-Bin
    Cai, Jian
    He, An
    Chen, Qing-Jun
    Zuo, Zhi-Liang
    He, Bing-Quan
    Tang, Xu-Lin
    Wu, Hong-Wei
    ENGINEERING STRUCTURES, 2021, 248
  • [35] Seismic performance of corrugated steel plate composite shear walls with various configurations
    Mou, Xingyu
    Lv, Henglin
    Li, Xian
    STRUCTURES, 2023, 57
  • [36] Cyclic behaviour of precast reinforced concrete sandwich slender walls
    Rao, G. Appa
    Poluraju, P.
    STRUCTURES, 2020, 28 : 80 - 92
  • [37] Study on seismic performance of high damping concrete coupled shear walls with concealed steel plate bracings
    Wang M.-F.
    Wang Y.-J.
    Gongcheng Lixue/Engineering Mechanics, 2017, 34 (01): : 204 - 212
  • [38] Seismic performance of concrete-infilled double steel corrugated-plate walls: Experimental research
    Zhu, Jing-Shen
    Guo, Yan-Lin
    Wang, Meng-Zheng
    Yang, Xiao
    Pi, Yong-Lin
    ENGINEERING STRUCTURES, 2020, 215
  • [39] Seismic performance of precast concrete superposed shear walls with CFST end columns subjected to cyclic loading
    Zhang, Feng-Liang
    Wu, Bian
    Zhang, Min
    Liu, Yang
    STRUCTURES, 2024, 68
  • [40] Cyclic loading experiments on seismic performance of precast concrete superposed shear walls with CFST end columns
    Wu, Bian
    Zhang, Feng-Liang
    Zhang, Min
    Li, Yong
    JOURNAL OF BUILDING ENGINEERING, 2024, 96