Grazing exclusion alters denitrification N2O/(N2O + N2) ratio in alpine meadow of Qinghai-Tibet Plateau

被引:5
|
作者
Tan, Yuechen [1 ]
Chen, Zhu [2 ]
Liu, Weiwei [1 ]
Yang, Mengying [3 ]
Du, Zhangliu [4 ]
Wang, Yifei [1 ]
Bol, Roland [5 ,6 ]
Wu, Di [4 ]
机构
[1] Chinese Acad Forestry, Inst Ecol Conservat & Restorat, Beijing Key Lab Wetland Serv & Restorat, Beijing 100091, Peoples R China
[2] Guizhou Univ, Coll Agr, Guiyang 550025, Peoples R China
[3] Guangzhou Res Inst Environm Protect Co Ltd, Guangzhou 510620, Peoples R China
[4] China Agr Univ, Coll Resources & Environm Sci, Beijing Key Lab Biodivers & Organ Farming, Beijing 100193, Peoples R China
[5] Forschungszentrum Julich, Inst Bioand Geosci Agrosphere IBG-3, D-52425 Julich, Germany
[6] Bangor Univ, Environm Ctr Wales, Sch Nat Sci, Bangor LL57 2UW, Wales
基金
中国国家自然科学基金;
关键词
Grazing exclusion; Hot moment; Bacterial denitrification; Product ratio; Microbial diversity; ELEVATED NITROGEN DEPOSITION; QINGHAI-TIBETAN PLATEAU; BELOW-GROUND BIOMASS; ALPINE MEADOW; COMMUNITY COMPOSITION; OXIDE PRODUCTION; PLANT COMMUNITY; SOIL PROPERTIES; TYPICAL STEPPE; LOESS PLATEAU;
D O I
10.1016/j.scitotenv.2023.169358
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Grazing exclusion has been implemented worldwide as a nature-based solution for restoring degraded grassland ecosystems that arise from overgrazing. However, the effect of grazing exclusion on soil nitrogen cycle processes, subsequent greenhouse gas emissions and underlying mechanisms remain unclear. Here, we investigated the effect of four-year grazing exclusion on plant communities, soil properties, and soil nitrogen cycle-related functional gene abundance in an alpine meadow on the Qinghai-Tibet Plateau. Using an automated continuous-flow incubation system, we performed an incubation experiment and measured soil-borne N2O, N-2, and CO2 fluxes to three successive "hot moment" events (precipitation, N deposition, and oxic-to-anoxic transition) between grazing-excluded and grazing soil. Higher soil N contents (total nitrogen, NH4+, NO3-) and extracellular enzyme activities (beta-1,4-glucosidase, beta-1,4-N-acetyl-glucosaminidase, cellobiohydrolase) are observed under grazing exclusion. The aboveground and litter biomass of plant community was significantly increased by grazing exclusion, but grazing exclusion decreased the average number of plant species and microbial diversity. The N2O + N-2 fluxes observed under grazing exclusion were higher than those observed under free grazing. The N-2 emissions and N2O/(N2O + N-2) ratios observed under grazing exclusion were higher than those observed under free grazing in oxic conditions. Instead, higher N2O fluxes and lower denitrification functional gene abundances (nirS, nirK, nosZ, and nirK + nirS) under anoxia were found under grazing exclusion than under free grazing. The N2O site-preference value indicates that under grazing exclusion, bacterial denitrification contributes more to higher N2O production compared with under free grazing (81.6 % vs. 59.9 %). We conclude that grazing exclusion could improve soil fertility and plant biomass, nevertheless it may lower plant and microbial diversity and increase potential N2O emission risk via the alteration of the denitrification end-product ratio. This indicates that not all grassland management options result in a mutually beneficial situation among wider environmental goals such as greenhouse gas mitigation, biodiversity, and social welfare.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effects of nitrogen deposition on N2O emission in a wet meadow on the Qinghai-Tibet Plateau
    Wu, Jiangqi
    Wang, Haiyan
    Li, Guang
    APPLIED SOIL ECOLOGY, 2023, 191
  • [2] Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils
    Friedl, Johannes
    Cardenas, Laura M.
    Clough, Timothy J.
    Dannenmann, Michael
    Hu, Chunsheng
    Scheer, Clemens
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2020, 47 : 61 - 71
  • [3] Warming intensified the effects of nitrogen addition on N2O emissions from alpine meadow in the northern Qinghai-Tibet Plateau
    Li, Ming-Jie
    Ge, Yi-Qing
    Ganjurjav, Hasbagan
    Hu, Guo-Zheng
    Wu, Hong-Bao
    Yan, Jun
    He, Shi-Cheng
    Gao, Qing-Zhu
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2024, 15 (01): : 101 - 112
  • [4] N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations
    Senbayram, M.
    Chen, R.
    Budai, A.
    Bakken, L.
    Dittert, K.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2012, 147 : 4 - 12
  • [5] Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau
    Hu, Yigang
    Chang, Xiaofeng
    Lin, Xingwu
    Wang, Yanfen
    Wang, Shiping
    Duan, Jichuang
    Zhang, Zhenhua
    Yang, Xiaoxia
    Luo, Caiyun
    Xu, Guangping
    Zhao, Xinquan
    SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (06): : 944 - 952
  • [6] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Shuping Qin
    Keren Ding
    Tim J. Clough
    Chunsheng Hu
    Jiafa Luo
    Biology and Fertility of Soils, 2017, 53 : 723 - 727
  • [7] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Qin, Shuping
    Ding, Keren
    Clough, Tim J.
    Hu, Chunsheng
    Luo, Jiafa
    BIOLOGY AND FERTILITY OF SOILS, 2017, 53 (07) : 723 - 727
  • [8] Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios
    Scheer, Clemens
    Fuchs, Kathrin
    Pelster, David E.
    Butterbach-Bahl, Klaus
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2020, 47 : 72 - 80
  • [9] Biochar mitigates the stimulatory effects of straw incorporation on N2O emission and N2O/(N2O + N2) ratio in upland soil
    Li, Chenglin
    Wei, Zhijun
    Wang, Xiaomin
    Ma, Xiaofang
    Tang, Quan
    Zhao, Bingzi
    Shan, Jun
    Yan, Xiaoyuan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [10] CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan Plateau as affected by N-addition and grazing exclusion
    Luo, Caiyun
    Wang, Shiping
    Zhang, Lirong
    Wilkes, Andreas
    Zhao, Liang
    Zhao, Xinquan
    Xu, Shixiao
    Xu, Burenbayin
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2020, 117 (01) : 29 - 42