On Some Weighted 1-Laplacian Problem on RN with Singular Behavior at the Origin

被引:0
作者
Aouaoui, Sami [1 ]
Dhifet, Mariem [2 ]
机构
[1] Univ Kairouan, High Inst Appl Math & Informat Kairouan, Ave Assad Iben Fourat, Kairouan 3100, Tunisia
[2] Univ Monastir, Fac Sci Monastir, Ave Environm, Monastir 5019, Tunisia
关键词
Unbounded domain; Weighted; 1-Laplacian; Bounded variation; Approximation technique; A priori estimates; Anzelotti's pairing theory; Variational method; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1007/s40840-023-01622-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we prove the existence of a nontrivial solution to a quasilinear elliptic problem defined on the whole Euclidean space R-N, N >= 2, and involving a weighted 1-Laplacian operator. The nonlinear term has a singular behavior at the origin. This solution is obtained through an approximation technique, which consists in considering the problem with the 1-Laplacian operator as a limit of a family of problems with the p-Laplacian operators when p -> 1(+). For that aim, a new version of Anzellotti's L-infinity-divergence-measure pairing theory is established and new arguments are used.
引用
收藏
页数:39
相关论文
共 39 条
  • [1] The Dirichlet problem for the total variation flow
    Andreu, F
    Ballester, C
    Caselles, V
    Mazón, JM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) : 347 - 403
  • [2] ANDREUVAILLO F, 2004, PROG MATH, V223, pR11
  • [3] ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
  • [4] Attouch H., 2006, Variational analysis in Sobolev and BV spaces, V6
  • [5] Baldi A, 2001, HOUSTON J MATH, V27, P683
  • [6] Divergence-measure fields and hyperbolic conservation laws
    Chen, GQ
    Frid, H
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) : 89 - 118
  • [7] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [8] Cicalese M, 2003, ASYMPTOTIC ANAL, V35, P27
  • [9] Pairings between bounded divergence-measure vector fields and BV functions
    Crasta, Graziano
    De Cicco, Virginia
    Malusa, Annalisa
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 787 - 810
  • [10] An extension of the pairing theory between divergence-measure fields and BV functions
    Crasta, Graziano
    De Cicco, Virginia
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) : 2605 - 2635