Analysis of an Embedded-Hybridizable Discontinuous Galerkin Method for Biot's Consolidation Model

被引:2
|
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Baylor Univ, Dept Math, Waco, TX 76706 USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Biot's consolidation model; Poroelasticity; Discontinuous Galerkin; Finite element methods; Hybridization; FINITE-ELEMENT-METHOD; ELASTIC WAVES; POROUS-MEDIA; POROELASTICITY; LOCKING; INEQUALITIES; PROPAGATION; FORMULATION; DIFFUSION; STABILITY;
D O I
10.1007/s10915-023-02373-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an embedded-hybridizable discontinuous Galerkin finite element method for the total pressure formulation of the quasi-static poroelasticity model. Although the displacement and the Darcy velocity are approximated by discontinuous piece-wise polynomials, H(div)-conformity of these unknowns is enforced by Lagrange multipliers. The semi-discrete problem is shown to be stable and the fully discrete problem is shown to be well-posed. Additionally, space-time a priori error estimates are derived, and confirmed by numerical examples, that show that the proposed discretization is free of volumetric locking.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A hybridizable discontinuous Galerkin method for Stokes flow
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 582 - 597
  • [22] A high-order hybridizable discontinuous Galerkin method for elliptic interface problems
    Huynh, L. N. T.
    Nguyen, N. C.
    Peraire, J.
    Khoo, B. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (02) : 183 - 200
  • [23] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Huiqiang Yue
    Jian Cheng
    Tiegang Liu
    Vladimir Shaydurov
    Boundary Value Problems, 2016
  • [24] A virtual element method for overcoming locking phenomena in Biot's consolidation model
    Liu, Xin
    Chen, Zhangxin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (05) : 3007 - 3027
  • [25] A high order hybridizable discontinuous Galerkin method for incompressible miscible displacement in heterogeneous media
    Fabien, Maurice S.
    Knepley, Matthew
    Riviere, Beatrice
    RESULTS IN APPLIED MATHEMATICS, 2020, 8
  • [26] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Bernardo Cockburn
    Bo Dong
    Johnny Guzmán
    Journal of Scientific Computing, 2009, 40 : 141 - 187
  • [27] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [28] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 141 - 187
  • [29] A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem
    Cesmelioglu, Aycil
    Lee, Jeonghun J.
    Rhebergen, Sander
    Tabaku, Dorisa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 165 : 180 - 195
  • [30] A hybridizable discontinuous Galerkin method for Stokes/Darcy coupling on dissimilar meshes
    Bermudez, Isaac
    Manriquez, Jaime
    Solano, Manuel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,