Dimension theory of Luroth digits

被引:3
作者
Feng, Y. [1 ]
Zhou, Q. L. [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Luroth expansion; Hausdorff dimension; Diophantine approximation; PARTIAL QUOTIENTS; NUMBERS;
D O I
10.1007/s10474-023-01344-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the relative growth properties of the Luroth digits and establish the Hausdorff dimension of exceptional sets of points with a given relative growth rate.
引用
收藏
页码:150 / 167
页数:18
相关论文
共 17 条
  • [1] Arroyo A., 2021, INTEGERS, V21
  • [2] Frequency of digits in the Luroth expansion
    Barreira, Luis
    Iommi, Godofredo
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1479 - 1490
  • [3] Barrionuevo J, 1996, ACTA ARITH, V74, P311
  • [4] The efficiency of approximating real numbers by Luroth expansion
    Cao, Chunyun
    Wu, Jun
    Zhang, Zhenliang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 497 - 513
  • [5] Dajani K., 1996, J. Theor. Nombres Bordeaux, V8, P331
  • [6] On the fast Khintchine spectrum in continued fractions
    Fan, Aihua
    Liao, Lingmin
    Wang, Baowei
    Wu, Jun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 329 - 340
  • [7] Sets of Dirichlet non-improvable numbers with certain order in the theory of continued fractions
    Feng, Jing
    Xu, Jian
    [J]. NONLINEARITY, 2021, 34 (03) : 1598 - 1611
  • [8] EXACT DIMENSIONS OF EXCEPTIONAL SETS IN LuROTH EXPANSIONS
    Feng, Yan
    Tan, Bo
    Zhou, Qing-Long
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [9] Galambos J., 1976, Representations of Real Numbers by Infinite Series
  • [10] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747