Biphasic Transition Metal Nitride Electrode Promotes Nucleophile Oxidation Reaction for Practicable Hybrid Water Electrocatalysis

被引:97
作者
Zhu, Yin [1 ]
Qian, Qizhu [1 ]
Chen, Yanxu [1 ]
He, Xiaoyue [1 ]
Shi, Xingwei [2 ]
Wang, Wentao [3 ]
Li, Ziyun [1 ]
Feng, Yafei [1 ]
Zhang, Genqiang [1 ]
Cheng, Fangyi [4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn, Inst Proc Engn, Beijing 100190, Peoples R China
[3] Guizhou Educ Univ, Guizhou Prov Key Lab Computat Nano Mat Sci, Guiyang 550018, Guizhou, Peoples R China
[4] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
biomass upgradings; glycerol electrooxidations; H-2; productions; hybrid water electrocatalysis; transition metal nitrides; GLYCEROL; HYDROGEN; ELECTROOXIDATION; EVOLUTION;
D O I
10.1002/adfm.202300547
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Glycerol electrooxidation (GOR), as a typical nucleophile oxidation reaction, is deemed as a promising alternative anodic route to assist cathodic hydrogen evolution reaction. However, the investigations of high-performance catalysts and industrial-scale application of GOR remain a grand challenge. Herein, biphasic Ni3N/Co3N heterostructure nanowires (denoted as Ni3N/Co3N-NWs) are proposed as an efficient bifunctional catalyst, which realizes a high Faradaic efficiency of 94.6% toward formate production. Importantly, the flow electrolyzer achieves an industry-level current density of 1 A cm(-2) at 2.01 V with impressive stability for steady running over 200 h, realizing lower electricity expense of 4.82 kWh m(H2)(-3) and energy saving efficiency of 9.7%, as well as outstanding co-production rates of 11 and 21.4 mmol cm(-2) h(-1) toward formate and H-2, respectively. Theoretical calculations reveal that the efficient electron transfer on Ni3N/Co3N heterointerfaces simultaneously optimizes nucleophile reaction tendency and glycerol dehydrogenation kinetics, thus contributing to excellent GOR performance.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[2]   Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the N-N Bond [J].
Chen, Wei ;
Xu, Leitao ;
Zhu, Xiaorong ;
Huang, Yu-Cheng ;
Zhou, Wang ;
Wang, Dongdong ;
Zhou, Yangyang ;
Du, Shiqian ;
Li, Qiling ;
Xie, Chao ;
Tao, Li ;
Dong, Chung-Li ;
Liu, Jilei ;
Wang, Yanyong ;
Chen, Ru ;
Su, Hui ;
Chen, Chen ;
Zou, Yuqin ;
Li, Yafei ;
Liu, Qinghua ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :7297-7307
[3]   Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation [J].
Chen, Wei ;
Xie, Chao ;
Wang, Yanyong ;
Zou, Yuqin ;
Dong, Chung-Li ;
Huang, Yu-Cheng ;
Xiao, Zhaohui ;
Wei, Zengxi ;
Du, Shiqian ;
Chen, Chen ;
Zhou, Bo ;
Ma, Jianmin ;
Wang, Shuangyin .
CHEM, 2020, 6 (11) :2974-2993
[4]   A Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection [J].
Dai, Xinglu ;
Deng, Wenqing ;
You, Chao ;
Shen, Zhen ;
Xiong, Xiaoli ;
Sun, Xuping .
ANALYTICAL METHODS, 2018, 10 (15) :1680-1684
[5]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[6]   The influence of stepped Pt[n(111)x(110)] electrodes towards glycerol electrooxidation: Electrochemical and FTIR studies [J].
Del Colle, V ;
Nunes, L. M. S. ;
Angelucci, C. A. ;
Feliu, J. M. ;
Tremiliosi-Filho, G. .
ELECTROCHIMICA ACTA, 2020, 346
[7]   Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity-Tuned 5-Hydroxymethylfurfural Oxidation [J].
Deng, Xiaohui ;
Xu, Ge-Yang ;
Zhang, Yue-Jiao ;
Wang, Lei ;
Zhang, Jiujun ;
Li, Jian-Feng ;
Fu, Xian-Zhu ;
Luo, Jing-Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) :20535-20542
[8]   High-Performance Rh2P Electrocatalyst for Efficient Water Splitting [J].
Duan, Haohong ;
Li, Dongguo ;
Tang, Yan ;
He, Yang ;
Ji, Shufang ;
Wang, Rongyue ;
Lv, Haifeng ;
Lopes, Pietro P. ;
Paulikas, Arvydas P. ;
Li, Haoyi ;
Mao, Scott X. ;
Wang, Chongmin ;
Markovic, Nenad M. ;
Li, Jun ;
Stamenkovic, Vojislav R. ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (15) :5494-5502
[9]   Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation [J].
Gu, Kaizhi ;
Wang, Dongdong ;
Xie, Chao ;
Wang, Tehua ;
Huang, Gen ;
Liu, Yanbo ;
Zou, Yuqin ;
Tao, Li ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) :20253-20258
[10]   Toward the Electrochemical Valorization of Glycerol: Fourier Transform Infrared Spectroscopic and Chromatographic Studies [J].
Holade, Yaovi ;
Morais, Claudia ;
Servat, Karine ;
Napporn, Teko W. ;
Kokoh, K. Boniface .
ACS CATALYSIS, 2013, 3 (10) :2403-2411