Local well-posedness for the gKdV equation on the background of a bounded function

被引:1
作者
Palacios, Jose Manuel [1 ]
机构
[1] Univ Orleans, Univ Tours, Inst Denis Poisson, CNRS, Parc Grandmont, F-37200 Tours, France
关键词
Well-posedness; global existence; unconditional uniqueness; KORTEWEG-DE-VRIES; DEVRIES EQUATION; ILL-POSEDNESS; NONLINEAR EVOLUTION; CAUCHY-PROBLEM; LOW REGULARITY; KDV;
D O I
10.4171/RMI/1345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the local well-posedness for the generalized Korteweg-de Vries equation in Hs.R/, s > 1=2, under general assumptions on the nonlinearity f .x/, on the background of an L1t;x-function parts per thousand.t; x/, with parts per thousand.t; x/ satisfying some suit-able conditions. As a consequence of our estimates, we also obtain the unconditional uniqueness of the solution in Hs.R/. This result not only gives us a framework to solve the gKdV equation around a Kink, for example, but also around a periodic solu-tion, that is, to consider localized non-periodic perturbations of a periodic solution. As a direct corollary, we obtain the unconditional uniqueness of the gKdV equation in Hs.R/ for s > 1=2. We also prove global existence in the energy space H1.R/, in the case where the nonlinearity satisfies If 00.x/I . 1.
引用
收藏
页码:341 / 396
页数:56
相关论文
共 54 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]  
Adams R. A., 1975, SOBOLEV SPACES
[3]   On the Regularization Mechanism for the Periodic Korteweg-de Vries Equation [J].
Babin, Anatoli V. ;
Ilyin, Alexei A. ;
Titi, Edriss S. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (05) :591-648
[4]  
BEREZIN YA, 1967, SOV PHYS JETP-USSR, V24, P1049
[5]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[6]  
Bona JL., 1994, Differ. Integr. Equ, V7, P699
[7]  
Christ M, 2003, AM J MATH, V125, P1235
[8]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[9]  
Dubrovin B A, 1976, RUSS MATH SURV, V31, P59, DOI 10.1070/RM1976v031n01ABEH001446
[10]   Global well-posedness for the modified Korteweg-de Vries equation [J].
Fonseca, G ;
Linares, F ;
Ponce, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) :683-705