On the logistic equation for the fractional p-Laplacian

被引:7
|
作者
Iannizzotto, Antonio [1 ]
Mosconi, Sunra [2 ]
Papageorgiou, Nikolaos S. S. [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Cagliari, Italy
[2] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens, Greece
关键词
bifurcation; comparison principle; fractional p-Laplacian; logistic equation; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; HOLDER REGULARITY; R-N; BIFURCATION; DIFFUSION;
D O I
10.1002/mana.202100025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Dirichlet problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic-type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in convenient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
引用
收藏
页码:1451 / 1468
页数:18
相关论文
共 50 条
  • [1] On a Singular Logistic Equation with the p-Laplacian
    Hai, Dang Dinh
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (03): : 339 - 348
  • [2] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Saifia, Ouarda
    Velin, Jean
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [3] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Ouarda Saifia
    Jean Vélin
    Mediterranean Journal of Mathematics, 2023, 20
  • [4] Solvability for a fractional p-Laplacian equation in a bounded domain
    Lv, Zhiwei
    Xu, Jiafa
    O'Regan, Donal
    AIMS MATHEMATICS, 2022, 7 (07): : 13258 - 13270
  • [5] Boundary behavior of solutions to fractional p-Laplacian equation
    Ataei, Alireza
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (02) : 255 - 273
  • [6] The Dirichlet problem for the fractional p-Laplacian evolution equation
    Luis Vazquez, Juan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6038 - 6056
  • [7] Multiple Solutions for a Fractional p-Laplacian Equation with Concave Nonlinearities
    Pei, Ruichang
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (02): : 93 - 108
  • [8] Existence and multiplicity of solutions for a fractional p-Laplacian equation with perturbation
    Zhi, Zhen
    Yan, Lijun
    Yang, Zuodong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [9] Existence of weak solutions for a fractional p-Laplacian equation in RN
    Xu, Jiafa
    O'Regan, Donal
    Dong, Wei
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) : 515 - 529
  • [10] Positive Solutions of Fractional Differential Equation with p-Laplacian Operator
    Ren, Teng
    Chen, Xiaochun
    ABSTRACT AND APPLIED ANALYSIS, 2013,