Approximation Results by Statistical Convergence Based on a Power Series in Modular Spaces

被引:0
作者
Tas, E. [1 ]
Yurdakadim, T. [2 ]
机构
[1] Kirsehir Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkiye
[2] Bilecik Seyh Edebali Univ, Dept Math, TR-11100 Bilecik, Turkiye
关键词
Korovkin type approximation; power series method; statistical convergence; modular spaces; OPERATORS; THEOREMS;
D O I
10.1134/S1995080223110379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present some approximation results in modular spaces for positive linear operators with the use of P-statistical convergence which is recently added to literature by combining statistical convergence and power series. As an application, we provide an example which shows that our theorems are efficient to use since P-statistical convergence assigns a limit to a divergent sequence. It is noteworthy to express that a sequence can be statistically convergent without being P-statistically convergent and vice versa.
引用
收藏
页码:4913 / 4919
页数:7
相关论文
共 22 条
  • [1] Matrix summability and positive linear operators
    Atlihan, Oezlem G.
    Orhan, Cihan
    [J]. POSITIVITY, 2007, 11 (03) : 387 - 398
  • [2] Modular filter convergence theorems for abstract sampling type operators
    Bardaro, C.
    Boccuto, A.
    Dimitriou, X.
    Mantellini, I.
    [J]. APPLICABLE ANALYSIS, 2013, 92 (11) : 2404 - 2423
  • [3] Bardaro C., 2007, Comment Math, V47, P239
  • [4] Bardaro C., 2008, J. Math. Ineq, V2, P247, DOI [10.7153/jmi-02-22, DOI 10.7153/JMI-02-22]
  • [5] A Korovkin theorem in multivariate modular function spaces
    Bardaro, Carlo
    Mantellini, Ilaria
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2009, 7 (02): : 105 - 120
  • [6] Bayram N., 2022, Hacet. J. Math. Stat, V51, P1
  • [7] Boos J., 2000, Classical and Modern Methods in Summability, DOI [10.1093/oso/9780198501657.001.0001, DOI 10.1093/OSO/9780198501657.001.0001]
  • [8] Approximation via Statistical Convergence in the Sense of Power Series Method of Bogel-Type Continuous Functions
    Demirci, K.
    Yildiz, S.
    Dirik, F.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2423 - 2432
  • [9] Approximation via statistical relative uniform convergence of sequences of functions at a point with respect to power series method
    Demirci, Kamil
    Dirik, Fadime
    Yildiz, Sevda
    [J]. AFRIKA MATEMATIKA, 2023, 34 (03)
  • [10] Duman O, 2008, TAIWAN J MATH, V12, P523