Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples

被引:3
作者
Lu, Yue [1 ,2 ]
Chen, Xingyu [3 ]
Wu, Zhengxing [1 ,2 ]
Tan, Min [1 ,2 ]
Yu, Junzhi [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Lab Cognit & Decis Intelligence Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Peking Univ, Coll Engn, Dept Adv Mfg & Robot, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; object detection; computer vision; deep learning;
D O I
10.1109/TMM.2023.3326872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For few-shot object detection, this work proposes a binary similarity detector (BSDet), which realizes a novel similarity-based multiple binary classification and enhances the feature margin between positive and hard negative samples. First, we revisit the classification paradigm, concluding that multiple binary classification paradigm is more suitable than multi-class classification paradigm for the few-shot task. Hence, we propose a binary similarity head (BSH) by posing the classification task as multiple binary similarity measurements rather than a multi-class prediction. Second, focusing on the hard negative samples, we propose a feature enhancement module (FEM). During training phase, the FEM can push the features of positive and hard negative samples far away from each other, and thus effectively suppresses false positives. Abundant experiments and visualizations indicate that our method achieves state-of-the-art performances on few-shot object detection tasks.
引用
收藏
页码:4805 / 4818
页数:14
相关论文
共 43 条
[21]   Decoupled Metric Network for Single-Stage Few-Shot Object Detection [J].
Lu, Yue ;
Chen, Xingyu ;
Wu, Zhengxing ;
Yu, Junzhi .
IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) :514-525
[22]   Localization Recall Precision (LRP): A New Performance Metric for Object Detection [J].
Oksuz, Kemal ;
Cam, Baris Can ;
Akbas, Emre ;
Kalkan, Sinan .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :521-537
[23]   OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features [J].
Osokin, Anton ;
Sumin, Denis ;
Lomakin, Vasily .
COMPUTER VISION - ECCV 2020, PT XV, 2020, 12360 :635-652
[24]   DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection [J].
Qiao, Limeng ;
Zhao, Yuxuan ;
Li, Zhiyuan ;
Qiu, Xi ;
Wu, Jianan ;
Zhang, Chi .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :8661-8670
[25]   Hierarchical Context Features Embedding for Object Detection [J].
Qiu, Heqian ;
Li, Hongliang ;
Wu, Qingbo ;
Meng, Fanman ;
Xu, Linfeng ;
Ngan, King Ngi ;
Shi, Hengcan .
IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (12) :3039-3050
[26]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149
[27]  
Schroff F, 2015, PROC CVPR IEEE, P815, DOI 10.1109/CVPR.2015.7298682
[28]   Training Region-based Object Detectors with Online Hard Example Mining [J].
Shrivastava, Abhinav ;
Gupta, Abhinav ;
Girshick, Ross .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :761-769
[29]   FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding [J].
Sun, Bo ;
Li, Banghuai ;
Cai, Shengcai ;
Yuan, Ye ;
Zhang, Chi .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7348-7358
[30]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007