Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples

被引:3
作者
Lu, Yue [1 ,2 ]
Chen, Xingyu [3 ]
Wu, Zhengxing [1 ,2 ]
Tan, Min [1 ,2 ]
Yu, Junzhi [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Lab Cognit & Decis Intelligence Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Peking Univ, Coll Engn, Dept Adv Mfg & Robot, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; object detection; computer vision; deep learning;
D O I
10.1109/TMM.2023.3326872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For few-shot object detection, this work proposes a binary similarity detector (BSDet), which realizes a novel similarity-based multiple binary classification and enhances the feature margin between positive and hard negative samples. First, we revisit the classification paradigm, concluding that multiple binary classification paradigm is more suitable than multi-class classification paradigm for the few-shot task. Hence, we propose a binary similarity head (BSH) by posing the classification task as multiple binary similarity measurements rather than a multi-class prediction. Second, focusing on the hard negative samples, we propose a feature enhancement module (FEM). During training phase, the FEM can push the features of positive and hard negative samples far away from each other, and thus effectively suppresses false positives. Abundant experiments and visualizations indicate that our method achieves state-of-the-art performances on few-shot object detection tasks.
引用
收藏
页码:4805 / 4818
页数:14
相关论文
共 43 条
[1]   DETReg: Unsupervised Pretraining with Region Priors for Object Detection [J].
Bar, Amir ;
Wang, Xin ;
Kantorov, Vadim ;
Reed, Colorado J. ;
Herzig, Roei ;
Chechik, Gal ;
Rohrbach, Anna ;
Darrell, Trevor ;
Globerson, Amir .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :14585-14595
[2]   Multisource-Refined Transfer Network for Industrial Fault Diagnosis Under Domain and Category Inconsistencies [J].
Chai, Zheng ;
Zhao, Chunhui ;
Huang, Biao .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) :9784-9796
[3]   Adaptive Image Transformer for One-Shot Object Detection [J].
Chen, Ding-Jie ;
Hsieh, He-Yen ;
Liu, Tyng-Luh .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12242-12251
[4]  
Chen H, 2018, AAAI CONF ARTIF INTE, P2836
[5]  
Cheng BW, 2020, Arxiv, DOI arXiv:1810.04002
[6]   Corner Proposal Network for Anchor-Free, Two-Stage Object Detection [J].
Duan, Kaiwen ;
Xie, Lingxi ;
Qi, Honggang ;
Bai, Song ;
Huang, Qingming ;
Tian, Qi .
COMPUTER VISION - ECCV 2020, PT III, 2020, 12348 :399-416
[7]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[8]   Generalized Few-Shot Object Detection without Forgetting [J].
Fan, Zhibo ;
Ma, Yuchen ;
Li, Zeming ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :4525-4534
[9]  
Gao XQ, 2023, Arxiv, DOI arXiv:2304.04222
[10]   Region-Based Convolutional Networks for Accurate Object Detection and Segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (01) :142-158