Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance

被引:18
作者
Hovi, Aarne [1 ]
Schraik, Daniel [1 ]
Kuusinen, Nea [1 ]
Fabianek, Tomas [2 ]
Hanus, Jan [2 ]
Homolova, Lucie [2 ]
Juola, Jussi [1 ]
Lukes, Petr [2 ]
Rautiainen, Miina [1 ]
机构
[1] Aalto Univ, Sch Engn, Dept Built Environm, POB 14100, Aalto 00076, Finland
[2] Czech Acad Sci, Global Change Res Inst, Belidla 986-4A, Brno 60300, Czech Republic
基金
芬兰科学院; 欧洲研究理事会;
关键词
Understory; Spectroscopy; Radiative transfer; Reflectance modeling; Airborne laser scanning; Sentinel-2; PRISMA; Hyperspectral; RADIATIVE-TRANSFER CALCULATIONS; PHOTON RECOLLISION PROBABILITY; LIBRADTRAN SOFTWARE PACKAGE; LEAF-AREA INDEX; UNDERSTORY VEGETATION; CANOPY REFLECTANCE; BACKGROUND REFLECTIVITY; SEASONAL DYNAMICS; BRDF DATA; NDVI;
D O I
10.1016/j.rse.2023.113610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest floor vegetation can account for a notable fraction of forest productivity and species diversity, and the composition of forest floor vegetation is an important indicator of site type. The signal from the forest floor influences the interpretation of optical remote sensing (RS) data. Retrieval of forest floor reflectance properties has commonly been investigated with multiangular RS data, which often have a coarse spatial resolution. We developed a method that utilizes a forest reflectance model based on photon recollision probability to retrieve forest floor reflectance from near-nadir data. The method was tested in boreal, hemiboreal, and temperate forests in Europe, with hemispherical photos and airborne LiDAR as alternative data sources to provide forest canopy structural information. These two data sources showed comparable performance, thus demonstrating the value of using airborne LiDAR as the structural reflectance model input to derive wall-to-wall maps of forest floor reflectance. We derived such maps from multispectral Sentinel-2 MSI and hyperspectral PRISMA satellite images for a boreal forest site. The validation against in situ measurements showed fairly good performance of the retrievals in sparse forests (that had effective plant area index less than 2). In dense forests, the retrievals were less accurate, due to the small contribution of forest floor to the RS signal. We also demonstrated the use of the method in monitoring the recovery of forest floor vegetation after a thinning disturbance. The reflectance model that we used is computationally efficient, making it well applicable also to data from new and forthcoming hyperspectral satellite missions.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
CAJANDER A. K., 1926, ADA FORESTALIA FENNICA, V29, P1
[2]   Retrieving forest background reflectance in a boreal region from Multi-anglo Imaging SpectroRadiometer (MISR) data [J].
Canisius, Francis ;
Chen, Jing M. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (1-2) :312-321
[3]   NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms [J].
Cawse-Nicholson, Kerry ;
Townsend, Philip A. ;
Schimel, David ;
Assiri, Ali M. ;
Blake, Pamela L. ;
Buongiorno, Maria Fabrizia ;
Campbell, Petya ;
Carmon, Nimrod ;
Casey, Kimberly A. ;
Correa-Pabon, Rosa Elvira ;
Dahlin, Kyla M. ;
Dashti, Hamid ;
Dennison, Philip E. ;
Dierssen, Heidi ;
Erickson, Adam ;
Fisher, Joshua B. ;
Frouin, Robert ;
Gatebe, Charles K. ;
Gholizadeh, Hamed ;
Gierach, Michelle ;
Glenn, Nancy F. ;
Goodman, James A. ;
Griffith, Daniel M. ;
Guild, Liane ;
Hakkenberg, Christopher R. ;
Hochberg, Eric J. ;
Holmes, Thomas R. H. ;
Hu, Chuanmin ;
Hulley, Glynn ;
Huemmrich, Karl F. ;
Kudela, Raphael M. ;
Kokaly, Raymond F. ;
Lee, Christine M. ;
Martin, Roberta ;
Miller, Charles E. ;
Moses, Wesley J. ;
Muller-Karger, Frank E. ;
Ortiz, Joseph D. ;
Otis, Daniel B. ;
Pahlevan, Nima ;
Painter, Thomas H. ;
Pavlick, Ryan ;
Poulter, Ben ;
Qi, Yi ;
Realmuto, Vincent J. ;
Roberts, Dar ;
Schaepman, Michael E. ;
Schneider, Fabian D. ;
Schwandner, Florian M. ;
Serbin, Shawn P. .
REMOTE SENSING OF ENVIRONMENT, 2021, 257
[4]  
Copernicus, 2022, COP OP ACC HUB
[5]  
CzechGlobe - Global Change Research Institute CAS, 2022, FLYING LAB LAB IM SY
[6]   The libRadtran software package for radiative transfer calculations (version 2.0.1) [J].
Emde, Claudia ;
Buras-Schnell, Robert ;
Kylling, Arve ;
Mayer, Bernhard ;
Gasteiger, Josef ;
Hamann, Ulrich ;
Kylling, Jonas ;
Richter, Bettina ;
Pause, Christian ;
Dowling, Timothy ;
Bugliaro, Luca .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) :1647-1672
[7]   Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates [J].
Eriksson, Helena Margaretha ;
Eklundh, Lars ;
Kuusk, Andres ;
Nilson, Tiit .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (04) :408-418
[8]  
Florio P., 2021, Non-Commercial Light Detection and Ranging (Lidar) Data in Europe, DOI [10.2760/212427, DOI 10.2760/212427]
[9]   Seasonal dynamics of lingonberry and blueberry spectra [J].
Forsstrom, Petri ;
Peltoniemi, Jouni ;
Rautiainen, Miina .
SILVA FENNICA, 2019, 53 (02)
[10]   Relationships between understory spectra and fractional cover in northern European boreal forests [J].
Forsstrom, Petri R. ;
Juola, Jussi ;
Rautiainen, Miina .
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 308