Probing chaos in the spherical p-spin glass model

被引:2
作者
Correale, Lorenzo [1 ,2 ]
Polkovnikov, Anatoli [3 ]
Schiro, Marco [4 ]
Silva, Alessandro [1 ]
机构
[1] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[2] INFN Ist Nazl Fis Nucleare, Sez Trieste, I-34136 Trieste, Italy
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] PSL Res Univ, Coll France, JEIP, UAR 3573 CNRS, 11 Pl Marcelin Berthelot, Paris, France
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 05期
关键词
STATISTICAL-MECHANICS; QUANTUM; DYNAMICS; SUSCEPTIBILITY; THERMALIZATION; POINTS;
D O I
10.21468/SciPostPhys.15.5.190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of a quantum p-spin glass model starting from initial states defined in microcanonical shells, in a classical regime. We compute different chaos estimators, such as the Lyapunov exponent and the Kolmogorov-Sinai entropy, and find a marked maximum as a function of the energy of the initial state. By studying the relaxation dynamics and the properties of the energy landscape we show that the maximal chaos emerges in correspondence with the fastest spin relaxation and the maximum complexity, thus suggesting a qualitative picture where chaos emerges as the trajectories are scattered over the exponentially many saddles of the underlying landscape. We also observe hints of ergodicity breaking at low energies, indicated by the correlation function and a maximum of the fidelity susceptibility.
引用
收藏
页数:32
相关论文
共 87 条
  • [1] Colloquium: Many-body localization, thermalization, and entanglement
    Abanin, Dmitry A.
    Altman, Ehud
    Bloch, Immanuel
    Serbyn, Maksym
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
  • [2] Universal Dynamics and Renormalization in Many-Body-Localized Systems
    Altman, Ehud
    Vosk, Ronen
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 383 - 409
  • [3] [Anonymous], 1898, J. Math. Pures Appl.
  • [4] The quantum p-spin glass model: a user manual for holographers
    Anous, Tarek
    Haehl, Felix M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (11):
  • [5] COMPLEXITY OF RANDOM SMOOTH FUNCTIONS ON THE HIGH-DIMENSIONAL SPHERE
    Auffinger, Antonio
    Ben Arous, Gerard
    [J]. ANNALS OF PROBABILITY, 2013, 41 (06) : 4214 - 4247
  • [6] Quantum-classical correspondence of strongly chaotic many-body spin models
    Benet, Luis
    Borgonovi, Fausto
    Izrailev, Felix M.
    Santos, Lea F.
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [7] Benettin G., 1980, MECCANICA, V15, P9, DOI [DOI 10.1007/BF02128236, 10.1007/BF02128236]
  • [8] Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237
  • [9] Quantum-to-Classical Crossover in Many-Body Chaos and Scrambling from Relaxation in a Glass
    Bera, Surajit
    Lokesh, K. Y. Venkata
    Banerjee, Sumilan
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [10] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Bianchi, Eugenio
    Hackl, Lucas
    Yokomizo, Nelson
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):