Model of neural development by differentiating human induced pluripotent stem cells into neural progenitor cells to study the neurodevelopmental toxicity of lead

被引:6
|
作者
Wang, Wei [1 ]
Wang, Tong [1 ]
Gao, Yu [1 ]
Liang, Geyu [1 ]
Pu, Yuepu [1 ]
Zhang, Juan [1 ,2 ,3 ]
机构
[1] Southeast Univ, Sch Publ Hlth, Key Lab Environm Med Engn, Minist Educ China, Nanjing 210009, Peoples R China
[2] Jiangsu Inst Sports & Hlth JISH, Nanjing 211100, Peoples R China
[3] Jiangsu Inst Sports & Hlth JISH, 99 Lize Rd,Max Sci Pk,Bldg 3, Nanjing 211100, Peoples R China
关键词
Lead; Human induced pluripotent stem cells; Embryoid bodies; Neural progenitor cells; Whole exome sequencing; MOLECULAR-SPECTRUM; EXPOSURE; MUTATIONS; DISEASE; NEUROGENESIS; EXPRESSION; PROTEIN; GENES; BRAIN;
D O I
10.1016/j.fct.2023.113947
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Lead (Pb) exposure causes immeasurable damage to multiple human systems, particularly the central nervous system (CNS). In this study, human induced pluripotent stem cells (hiPSCs) were differentiated into neural progenitor cells (NPCs) to investigate the neurotoxic effects of Pb. The hiPSCs were treated with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 & mu;mol/L Pb for 7 days, whereas embryoid bodies (EBs) and NPCs were treated with 0, 0.1, 0.5, and 1.0 & mu;mol/L Pb for 7 days. Pb exposure disrupted the cell cycle and caused apoptosis in hiPSCs, EBs, and NPCs. Besides, Pb inhibited the differentiation of NPCs and EBs. Whole exome sequencing revealed 2509, 2413, and 1984 single nucleotide variants (SNVs) caused by Pb in hiPSCs, EBs, and NPCs, respectively. The common mutation sites in the exon region were mostly nonsynonymous mutations. We identified 18, 19, and 18 common deleterious mutations in hiPSCs, EBs, and NPCs, respectively. Additionally, Online Mendelian Inheritance in Man database analysis revealed 30, 20, and 13 genes related to CNS disorders in hiPSCs, EBs, and NPCs, respectively. Our findings suggest that this in vitro model may supplement animal models and be applied to the study of neurodevelopmental toxicity in the future.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Generation and applications of human pluripotent stem cells induced into neural lineages and neural tissues
    Martinez, Y.
    Dubois-Dauphin, M.
    Krause, K. -H.
    FRONTIERS IN PHYSIOLOGY, 2012, 3
  • [32] Human Induced Pluripotent Stem Cell-Technology to Study the Effects of HSV-1 on Neural Progenitor Cells
    D'Aiuto, Leonardo
    Roofeh, David
    Watson, Annie
    Bamne, Mikhil
    Kinchington, Paul Robert
    Nimgaonkar, Vishwajit
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 51S - 51S
  • [33] Glucocorticoids promote neural progenitor cell proliferation derived from human induced pluripotent stem cells
    Ninomiya, Eiichi
    Hattori, Taeka
    Toyoda, Masashi
    Umezawa, Akihiro
    Hamazaki, Takashi
    Shintaku, Haruo
    SPRINGERPLUS, 2014, 3
  • [34] Generation of induced pluripotent stem cells from neural stem cells
    Jeong Beom Kim
    Holm Zaehres
    Marcos J Araúzo-Bravo
    Hans R Schöler
    Nature Protocols, 2009, 4 : 1464 - 1470
  • [35] Generation of induced pluripotent stem cells from neural stem cells
    Kim, Jeong Beom
    Zaehres, Holm
    Arauzo-Bravo, Marcos J.
    Schoeler, Hans R.
    NATURE PROTOCOLS, 2009, 4 (10) : 1464 - 1470
  • [36] Histone Deacetylases in Neural Stem Cells and Induced Pluripotent Stem Cells
    Sun, Guoqiang
    Fu, Chelsea
    Shen, Caroline
    Shi, Yanhong
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2011,
  • [37] Production of neural stem cells from human pluripotent stem cells
    Wen, Yu
    Jin, Sha
    JOURNAL OF BIOTECHNOLOGY, 2014, 188 : 122 - 129
  • [38] Derivation of primitive neural stem cells from human-induced pluripotent stem cells
    Shin, Woo Jung
    Seo, Ji-Hye
    Choi, Hyun Woo
    Hong, Yean Ju
    Lee, Won Ji
    Chae, Jung Il
    Kim, Sung Joo
    Lee, Jeong Woong
    Hong, Kwonho
    Song, Hyuk
    Park, Chankyu
    Do, Jeong Tae
    JOURNAL OF COMPARATIVE NEUROLOGY, 2019, 527 (18) : 3023 - 3033
  • [39] Rapid and Simplified Induction of Neural Stem/Progenitor Cells (NSCs/NPCs) and Neurons from Human Induced Pluripotent Stem Cells (hiPSCs)
    Kajihara, Ryutaro
    Numakawa, Tadahiro
    Era, Takumi
    BIO-PROTOCOL, 2021, 11 (03):
  • [40] Differentiating endothelial cells from human induced pluripotent stem cells
    Guo, Z.
    Shen, C.
    Gledhill, K.
    Abaci, H. E.
    Coffman, A.
    Shinkuma, S.
    Higgins, C.
    Gillette, B.
    Sia, S. K.
    Christiano, A.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2015, 135 : S73 - S73