DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE | 2023年 / 85卷 / 02期
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [41] Data-driven safe gain-scheduling control
    Modares, Amir
    Sadati, Nasser
    Modares, Hamidreza
    ASIAN JOURNAL OF CONTROL, 2023, 25 (06) : 4171 - 4182
  • [42] Koopman operator based model predictive control for trajectory tracking of an omnidirectional mobile manipulator
    Zhu, Xuehong
    Ding, Chengjun
    Jia, Lizhen
    Feng, Yubo
    MEASUREMENT & CONTROL, 2022, 55 (9-10) : 1067 - 1077
  • [43] Data-Driven Model Predictive Control for Wave Energy Converters Using Gaussian Process
    Liu, Yanhua
    Shi, Shuo
    Zhang, Zhenbin
    Di, Zhenfeng
    Babayomi, Oluleke
    SYMMETRY-BASEL, 2022, 14 (07):
  • [44] Optimal control of a fed-batch fermenter using parameterized data-driven models
    Rani, K. Yamuna
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2008, 67 (10): : 759 - 773
  • [45] Data-Driven Robust Predictive Control for Mixed Vehicle Platoons Using Noisy Measurement
    Lan, Jianglin
    Zhao, Dezong
    Tian, Daxin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6586 - 6596
  • [46] Data-Driven Distributed Optimal Control Using Neighbourhood Optimization for Nonlinear Interconnected Systems
    Farzanegan, Behzad
    Menhaj, Mohammad Bagher
    Suratgar, Amir Abolfazl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) : 1054 - 1082
  • [47] Intelligent Control for Floating Offshore Wind Turbines Based on Game Theory with Data-Driven and Reliability Awareness
    Zhang, Yanfeng
    Yang, Xiyun
    ENERGY TECHNOLOGY, 2023, 11 (09)
  • [48] Data-Driven Economic NMPC Using Reinforcement Learning
    Gros, Sebastien
    Zanon, Mario
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (02) : 636 - 648
  • [49] Toward Data-Driven Optimal Control: A Systematic Review of the Landscape
    Prag, Krupa
    Woolway, Matthew
    Celik, Turgay
    IEEE ACCESS, 2022, 10 : 32190 - 32212
  • [50] Data-driven model predictive quality control of batch processes
    Aumi, Siam
    Corbett, Brandon
    Clarke-Pringle, Tracy
    Mhaskar, Prashant
    AICHE JOURNAL, 2013, 59 (08) : 2852 - 2861