DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [41] Optimal DMD Koopman Data-Driven Control of a Worm Robot
    Rahmani, Mehran
    Redkar, Sangram
    BIOMIMETICS, 2024, 9 (11)
  • [42] Active Data-Driven Model and Robust Control Scheme for Twisted Tendon-Sheath Hysteresis System Using Koopman Operator
    Wang, Xiangyu
    Fang, Yongchun
    Han, Jianda
    Yu, Ningbo
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 5526 - 5538
  • [43] Data-Driven Modeling of Automated Vehicles: Koopman Operator Approach and Its Application
    Kim J.S.
    Chung C.C.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (11): : 1038 - 1044
  • [44] Local Koopman Operators for Data-Driven Control of Robotic Systems
    Mamakoukas, Giorgos
    Castano, Maria
    Tan, Xiaobo
    Murphey, Todd
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [45] Robust Model Predictive Control with Data-Driven Koopman Operators
    Mamakoukas, Giorgos
    Di Cairano, Stefano
    Vinod, Abraham P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3885 - 3892
  • [46] Data Driven Modeling of Turbocharger Turbine using Koopman Operator
    Zinage, Shrenik
    Jadhav, Suyash
    Zhou, Yifei
    Bilionis, Ilias
    Meckl, Peter
    IFAC PAPERSONLINE, 2022, 55 (37): : 175 - 180
  • [47] Data-Driven Dynamic State Estimation Framework Using a Koopman Operator-Based Linear Predictor
    Yang, Deyou
    Gao, Han
    Chen, Zhe
    Lv, Yanling
    Wang, Lixin
    IEEE ACCESS, 2025, 13 : 31660 - 31670
  • [48] Data-driven optimal control under safety constraints using sparse Koopman approximation
    Yu, Hongzhe
    Moyalan, Joseph
    Vaidya, Umesh
    Chen, Yongxin
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10574 - 10579
  • [49] Data-driven acoustic control of a spherical bubble using a Koopman linear quadratic regulator
    Gibson, Andrew J.
    Yee, Xin C.
    Calvisi, Michael L.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (01): : 229 - 243
  • [50] Data-driven Stabilization of Discrete-time Control-affine Nonlinear Systems: A Koopman Operator Approach
    Sinha, Subhrajit
    Nandanoori, Sai Pushpak
    Drgona, Jan
    Vrabie, Draguna
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 552 - 559