DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE | 2023年 / 85卷 / 02期
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [31] Data-Driven Predictive Control for Autonomous Systems
    Rosolia, Ugo
    Zhang, Xiaojing
    Borrelli, Francesco
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 259 - 286
  • [32] Distributed Data-Driven Control of Transportation Networks
    Toro, Vladimir
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    IFAC PAPERSONLINE, 2022, 55 (10): : 239 - 244
  • [33] Direct Data-Driven Control of Constrained Systems
    Piga, Dario
    Formentin, Simone
    Bemporad, Alberto
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (04) : 1422 - 1429
  • [34] Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey
    Martin, Tim
    Schoen, Thomas B.
    Allgoewer, Frank
    ANNUAL REVIEWS IN CONTROL, 2023, 56
  • [35] Robust Data-Driven Control of Artificial Pancreas Systems Using Neural Networks
    Dutta, Souradeep
    Kushner, Taisa
    Sankaranarayanan, Sriram
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2018), 2018, 11095 : 183 - 202
  • [36] Data-Driven Modeling and Distributed Predictive Control of Mixed Vehicle Platoons
    Zhan, Jingyuan
    Ma, Zibo
    Zhang, Liguo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 572 - 582
  • [37] Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization
    Wang, Zheming
    Berger, Guillaume O.
    Jungers, Raphael M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) : 7310 - 7325
  • [38] DATA-DRIVEN INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL
    Wahab, Norhaliza
    Katebi, Mohamed Reza
    Rahmat, Mohd Fua'ad
    Bunyamin, Salinda
    JURNAL TEKNOLOGI, 2011, 54
  • [39] Frequency-Domain Data-Driven Predictive Control
    Meijer, T. J.
    Nouwens, S. A. N.
    Scheres, K. J. A.
    Dolk, V. S.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2024, 58 (18): : 86 - 91
  • [40] Robust analysis for data-driven model predictive control
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    Xiaojun, Tang
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 393 - 404