DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [31] Data-driven identification and fast model predictive control of the ORC waste heat recovery system by using Koopman operator
    Shi, Yao
    Hu, Xiaorong
    Zhang, Zhiming
    Chen, Qiming
    Xie, Lei
    Su, Hongye
    CONTROL ENGINEERING PRACTICE, 2023, 141
  • [32] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [33] Asymptotically stable data-driven koopman operator approximation with inputs using total extended DMD
    Lortie, Louis
    Forbes, James Richard
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [34] Data-Driven Control of Linear Parabolic Systems Using Koopman Eigenstructure Assignment
    Deutscher, Joachim
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 665 - 672
  • [35] Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator
    Gallos, Ioannis K.
    Lehmberg, Daniel
    Dietrich, Felix
    Siettos, Constantinos
    CHAOS, 2024, 34 (01)
  • [36] Data-Driven Feedback Linearization Using the Koopman Generator
    Gadginmath, Darshan
    Krishnan, Vishaal
    Pasqualetti, Fabio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8844 - 8851
  • [37] Data-Driven Modeling and Control for Lane Keeping System of Automated Driving Vehicles: Koopman Operator Approach
    Kim, Jin Sung
    Quan, Ying Shuai
    Chung, Chung Choo
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 1049 - 1055
  • [38] Data-Driven Nonlinear Model Reduction Using Koopman Theory: Integrated Control Form and NMPC Case Study
    Schulze, Jan C.
    Mitsos, Alexander
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2978 - 2983
  • [39] Direct data-driven stabilization of nonlinear affine systems via the Koopman operator
    Fu, Xingyun
    You, Keyou
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2668 - 2673
  • [40] Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sbarciog, Mihaela
    Vande Wouwer, Alain
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 109 - 131