DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE | 2023年 / 85卷 / 02期
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [21] Model Predictive Control of a Vehicle using Koopman Operator
    Cibulka, Vit
    Hanis, Tomas
    Korda, Milan
    Hromcik, Martin
    IFAC PAPERSONLINE, 2020, 53 (02): : 4228 - 4233
  • [22] Data-driven Static Equivalence with Physics-informed Koopman Operators
    Lin, Wei
    Zhao, Changhong
    Gao, Maosheng
    Chung, C. Y.
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2024, 10 (01): : 432 - 438
  • [23] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [24] Data-Driven Design of Model Predictive Control for Powertrain-Aware Eco-Driving Considering Nonlinearities Using Koopman Analysis
    Shen, Daliang
    Han, Jihun
    Karbowski, Dominik
    Rousseau, Aymeric
    IFAC PAPERSONLINE, 2022, 55 (24): : 117 - 122
  • [25] Behavioral systems theory in data-driven analysis, signal processing, and control
    Markovsky, Ivan
    Dorfler, Florian
    ANNUAL REVIEWS IN CONTROL, 2021, 52 : 42 - 64
  • [26] Data-Driven Control: Overview and Perspectives
    Tang, Wentao
    Daoutidis, Prodromos
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 1048 - 1064
  • [27] Vehicular Applications of Koopman Operator Theory-A Survey
    Manzoor, Waqas A.
    Rawashdeh, Samir
    Mohammadi, Alireza
    IEEE ACCESS, 2023, 11 : 25917 - 25931
  • [28] Direct Data-Driven Control for Cascade Control System
    Hong Jianwang
    Ramirez-Mendoza, Ricardo A.
    Tang Xiaojun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [29] Data-Driven Control Based on the Behavioral Approach FROM THEORY TO APPLICATIONS IN POWER SYSTEMS
    Markovsky, Ivan
    Huang, Linbin
    Dorfler, Florian
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 28 - 68
  • [30] Data-driven Koopman model predictive control for hybrid energy storage system of electric vehicles under vehicle-following scenarios
    Chen, Bin
    Wang, Miaoben
    Hu, Lin
    He, Guo
    Yan, Haoyang
    Wen, Xinji
    Du, Ronghua
    APPLIED ENERGY, 2024, 365