DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY

被引:0
|
作者
Dekhici, Benaissa [1 ]
Benyahia, Boumediene [1 ]
Cherki, Brahim [1 ]
机构
[1] Univ Tlemcen, Fac Technol, Automatic Lab Tlemcen, Tilimsen, Algeria
关键词
Chemostat; Model predictive control; Data -driven control de; sign; Linear model; Koopman operator theory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chemostat is widely used as a laboratory pilot for bioprocess studies. Chemostat models are nonlinear and rarely used in modern control experiments. For a data-driven control strategy, we use the Koopman operator approach to derive a linear model for a simple chemostat with one substrate and one biomass, using only the chemostat's input-output data. For chemostat control, we use the linear Koopman model to develop a MPC controller. The linear Koopman model best fits chemostat data compared to the local linearization-based model. In addition, the MPC based on the Koopman model gives very satisfying results compard with a linear MPC controller when applied to control the chemostat. The results are gained for a large space of initial conditions when chemostat control is usually limited.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [21] Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
    Abraham, Ian
    Murphey, Todd D.
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) : 1071 - 1083
  • [22] Data-driven Battery Modeling based on Koopman Operator Approximation using Neural Network
    Choi, Hyungjin
    De Angelis, Valerio
    Preger, Yuliya
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [23] Data-driven H∞ Optimal Controller Design using the Koopman Operator: Case Study
    Ganz, Felix
    Datar, Adwait
    Goettsch, Patrick
    Werner, Herbert
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 594 - 599
  • [24] Data-driven Characterization of Recovery Energy in Controlled Dynamical Systems using Koopman Operator
    Ramachandran, Thiagarajan
    Nandanoori, Sai Pushpak
    Sinha, Subhrajit
    Bakker, Craig
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2230 - 2235
  • [25] Data-Driven Model Predictive Control using Interpolated Koopman Generators
    Peitz, Sebastian
    Otto, Samuel E.
    Rowley, Clarence W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03): : 2162 - 2193
  • [26] Data-driven moving horizon state estimation of nonlinear processes using Koopman operator
    Yin, Xunyuan
    Qin, Yan
    Liu, Jinfeng
    Huang, Biao
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 200 : 481 - 492
  • [27] Data-Driven Encoding: A New Numerical Method for Computation of the Koopman Operator
    Ng, Jerry
    Asada, H. Harry
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (07) : 3940 - 3947
  • [28] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [29] Koopman Operator Approach Data-Driven Optimal Control Algorithm for Autonomous Vehicles with various characteristics
    Kim, Hakjoo
    Lee, Hwan-Hong
    Kee, Seok-Cheol
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 244 - 251
  • [30] Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator
    Garcia-Tenorio, C.
    Tellez-Castro, D.
    Mojica-Nava, E.
    Vande Wouwer, A.
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 566 - 571