A method for modelling polymer electrolyte decomposition during the Li-nucleation process in Li-metal batteries

被引:17
作者
Wu, Liang-Ting [1 ,2 ]
Andersson, Edvin K. W. [2 ]
Hahlin, Maria [2 ,3 ]
Mindemark, Jonas [2 ]
Brandell, Daniel [2 ]
Jiang, Jyh-Chiang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan
[2] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, S-75121 Uppsala, Sweden
[3] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
关键词
TOTAL-ENERGY CALCULATIONS; LAYER FORMATION; STABILITY; INTERFACES; INTERPHASE; COMPLEXES; INSIGHT; ANODE; HOST; SAFE;
D O I
10.1038/s41598-023-36271-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Elucidating the complex degradation pathways and formed decomposition products of the electrolytes in Li-metal batteries remains challenging. So far, computational studies have been dominated by studying the reactions at inert Li-metal surfaces. In contrast, this study combines DFT and AIMD calculations to explore the Li-nucleation process for studying interfacial reactions during Li-plating by introducing Li-atoms close to the metal surface. These Li-atoms were added into the PEO polymer electrolytes in three stages to simulate the spontaneous reactions. It is found that the highly reactive Li-atoms added during the simulated nucleation contribute to PEO decomposition, and the resulting SEI components in this calculation include lithium alkoxide, ethylene, and lithium ethylene complexes. Meanwhile, the analysis of atomic charge provides a reliable guideline for XPS spectrum fitting in these complicated multicomponent systems. This work gives new insights into the Li-nucleation process, and experimental XPS data supporting this computational strategy. The AIMD/DFT approach combined with surface XPS spectra can thus help efficiently screen potential polymer materials for solid-state battery polymer electrolytes.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Early-stage decomposition of solid polymer electrolytes in Li-metal batteries [J].
Andersson, Edvin K. W. ;
Sangeland, Christofer ;
Berggren, Elin ;
Johansson, Fredrik O. L. ;
Kuhn, Danilo ;
Lindblad, Andreas ;
Mindemark, Jonas ;
Hahlin, Maria .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (39) :22462-22471
[2]   A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation [J].
Blau, Samuel M. ;
Patel, Hetal D. ;
Spotte-Smith, Evan Walter Clark ;
Xie, Xiaowei ;
Dwaraknath, Shyam ;
Persson, Kristin A. .
CHEMICAL SCIENCE, 2021, 12 (13) :4931-4939
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894
[5]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[6]   Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode [J].
Chen, Xiang ;
Shen, Xin ;
Li, Bo ;
Peng, Hong-Jie ;
Cheng, Xin-Bing ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (03) :734-737
[7]   Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode [J].
Chen, Xiang ;
Hou, Ting-Zheng ;
Li, Bo ;
Yan, Chong ;
Zhu, Lin ;
Guan, Chao ;
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 8 :194-201
[8]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[9]   Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations [J].
Ebadi, Mahsa ;
Marchiori, Cleber ;
Mindemark, Jonas ;
Brandell, Daniel ;
Araujo, C. Moyses .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) :8394-8404
[10]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)