Robust semiparametric modeling of mean and covariance in longitudinal data

被引:0
|
作者
Ran, Mengfei [1 ]
Yang, Yihe [2 ]
Kano, Yutaka [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
[2] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA
关键词
Longitudinal studies; Robust estimation; Semiparametric model; Modified Cholesky decomposition; GENERALIZED ESTIMATING EQUATIONS; EMPIRICAL LIKELIHOOD; VARIABLE SELECTION; LINEAR-MODELS; REGRESSION; MATRIX;
D O I
10.1007/s42081-023-00204-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data often suffer from heavy-tailed errors and outliers, which can significantly reduce efficiency and lead to invalid inferences. Robust techniques are essential, especially in joint mean-covariance modeling, as the estimation of the covariance matrix is more sensitive to heavy-tailed errors and outliers than the estimation of the mean. Motivated by the modified Cholesky decomposition of the covariance matrix, we propose a novel semiparametric method that uses robust techniques to simultaneously estimate the mean, autoregressive coefficients, and innovation variance. We provide a practical algorithm for this method and investigate the asymptotic properties of the mean and covariance estimators. Numerical simulations demonstrate that the proposed method is efficient and stable when the dataset is contaminated with outliers and heavy-tailed errors. The new robust technique yields statistically interpretable inferences in real data analysis, whereas traditional approaches fail to provide any acceptable inferences.
引用
收藏
页码:625 / 648
页数:24
相关论文
共 50 条
  • [21] VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL FOR LONGITUDINAL DATA ANALYSIS
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    STATISTICA SINICA, 2014, 24 (02) : 515 - 531
  • [22] Semiparametric statistical inferences for longitudinal data with nonparametric covariance modelling
    Xu, Qunfang
    Bai, Yang
    STATISTICS, 2017, 51 (06) : 1280 - 1303
  • [23] Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation
    Li, Yehua
    BIOMETRIKA, 2011, 98 (02) : 355 - 370
  • [24] jmcm: An R Package for Joint Mean-Covariance Modeling of Longitudinal Data
    Pan, Jianxin
    Pan, Yi
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 82 (09): : 1 - 29
  • [25] COVARIANCE STRUCTURES FOR MODELING LONGITUDINAL DATA
    Purdy, C.
    VALUE IN HEALTH, 2011, 14 (07) : A423 - A423
  • [26] A Semiparametric Approach to Simultaneous Covariance Estimation for Bivariate Sparse Longitudinal Data
    Das, Kiranmoy
    Daniels, Michael J.
    BIOMETRICS, 2014, 70 (01) : 33 - 43
  • [27] Adaptive robust estimation in joint mean-covariance regression model for bivariate longitudinal data
    Lv, Jing
    Guo, Chaohui
    Li, Tingting
    Hao, Yuanyuan
    Pan, Xiaolin
    STATISTICS, 2018, 52 (01) : 64 - 83
  • [28] Nonparametric estimation of mean and covariance structures for longitudinal data
    Lin, Huazhen
    Pan, Jianxin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 557 - 574
  • [29] Graphical models for mean and covariance of multivariate longitudinal data
    Kohli, Priya
    Du, Xinyu
    Shen, Haoyang
    STATISTICS IN MEDICINE, 2021, 40 (23) : 4977 - 4995
  • [30] Variable Selection in Semiparametric Quantile Modeling for Longitudinal Data
    Wang, Kangning
    Lin, Lu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (11) : 2243 - 2266