Convergence of p-Energy Forms on Homogeneous p.c.f Self-Similar Sets

被引:4
作者
Gao, Jin [1 ]
Yu, Zhenyu [2 ]
Zhang, Junda [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Gamma-convergence; p-energy form; p-Laplacian; p.c.f; fractals; Lipschitz spaces; NONLOCAL DIRICHLET FORMS; SPACES; GASKET; NORMS;
D O I
10.1007/s11118-022-10031-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give definitions of p-energy forms on homogenous p.c.f. self-similar sets and point that the domains of non-local p-energy form, local p-energy form are Lipschitz spaces B-p(,p)sigma, B-p,infinity(sigma), respectively. By constructing equivalent semi-norms of p-energy forms, we obtain the convergence of the B-p(,p)sigma-norms to the (sigma*)(B)(p,infinity)-norm as sigma up arrow sigma*, where the critical exponent sigma* is the supremum of sigma such that B-p,infinity(sigma) boolean AND C(K) is dense in C(K).
引用
收藏
页码:1851 / 1874
页数:24
相关论文
共 25 条
[11]  
Heinonen J., 2001, Lectures on analysis on metric spaces
[12]   p-energy and p-harmonic functions on Sierpinski gasket type fractals [J].
Herman, PE ;
Peirone, R ;
Strichartz, RS .
POTENTIAL ANALYSIS, 2004, 20 (02) :125-148
[13]  
Hu JX, 2007, PROG NAT SCI, V17, P775
[14]   A note on Hajlasz-Sobolev spaces on fractals [J].
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (01) :91-101
[15]   Brownian motion on fractals and function spaces [J].
Jonsson, A .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) :495-504
[16]   HARMONIC CALCULUS ON PCF SELF-SIMILAR SETS [J].
KIGAMI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :721-755
[17]  
Kigami J., 2001, Analysis on Fractals, V143, DOI DOI 10.1017/CBO9780511470943
[18]  
Korevaar N.J., 1993, Communications in Analysis and Geometry, V1, P561
[19]  
Koskela P, 1998, STUD MATH, V131, P1
[20]  
Pietruska-Paluba K., 2008, B POL ACAD SCI MATH, V56, P257