Convergence of p-Energy Forms on Homogeneous p.c.f Self-Similar Sets

被引:4
作者
Gao, Jin [1 ]
Yu, Zhenyu [2 ]
Zhang, Junda [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Gamma-convergence; p-energy form; p-Laplacian; p.c.f; fractals; Lipschitz spaces; NONLOCAL DIRICHLET FORMS; SPACES; GASKET; NORMS;
D O I
10.1007/s11118-022-10031-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give definitions of p-energy forms on homogenous p.c.f. self-similar sets and point that the domains of non-local p-energy form, local p-energy form are Lipschitz spaces B-p(,p)sigma, B-p,infinity(sigma), respectively. By constructing equivalent semi-norms of p-energy forms, we obtain the convergence of the B-p(,p)sigma-norms to the (sigma*)(B)(p,infinity)-norm as sigma up arrow sigma*, where the critical exponent sigma* is the supremum of sigma such that B-p,infinity(sigma) boolean AND C(K) is dense in C(K).
引用
收藏
页码:1851 / 1874
页数:24
相关论文
共 25 条
[1]   Discrete characterisations of Lipschitz spaces on fractals [J].
Bodin, Mats .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (01) :26-43
[2]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[3]  
Dal Maso G, 1993, An Introduction to -convergence
[4]   Open set condition and post-critically finite self-similar sets [J].
Deng, Qi-Rong ;
Lau, Ka-Sing .
NONLINEARITY, 2008, 21 (06) :1227-1232
[5]   Heat kernels on metric measure spaces and an application to semilinear elliptic equations [J].
Grigor'yan, A ;
Hu, JX ;
Lau, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :2065-2095
[6]   LOCAL AND NON-LOCAL DIRICHLET FORMS ON THE SIERPITSKI CARPET [J].
Grigor'yan, Alexander ;
Yang, Meng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :3985-4030
[7]   Heat kernel and Lipschitz-Besov spaces [J].
Grigor'yan, Alexander ;
Liu, Liguang .
FORUM MATHEMATICUM, 2015, 27 (06) :3567-3613
[8]  
GU Q., 2021, Adv. Anal. Geom., V3, P71
[9]   DIRICHLET FORMS AND CONVERGENCE OF BESOV NORMS ON SELF-SIMILAR SETS [J].
Gu, Qingsong ;
Lau, Ka-Sing .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 :625-646
[10]   DIRICHLET FORMS AND CRITICAL EXPONENTS ON FRACTALS [J].
Gu, Qingsong ;
Lau, Ka-Sing .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (03) :1619-1652