Crosstalk between m6A modification and autophagy in cancer

被引:9
作者
Chen, Tao [1 ,2 ,4 ]
Zheng, Liying [3 ]
Luo, Peiyue [1 ,2 ,4 ]
Zou, Jun [1 ,2 ,4 ]
Li, Wei [1 ,2 ,4 ]
Chen, Qi [1 ,2 ,4 ]
Zou, Junrong [2 ,4 ]
Qian, Biao [2 ,4 ]
机构
[1] Gannan Med Univ, Clin Coll 1, Ganzhou, Jiangxi, Peoples R China
[2] Gannan Med Univ, Affiliated Hosp 1, Dept Urol, Ganzhou, Jiangxi, Peoples R China
[3] Gannan Med Univ, Affiliated Hosp 1, Dept Grad, Ganzhou, Jiangxi, Peoples R China
[4] Key Lab Urol & Androl Ganzhou, Ganzhou, Jiangxi, Peoples R China
关键词
Autophagy; m6A modification; Cancer; Duality; Cancer therapy; MESSENGER-RNA METHYLATION; M(6)A RNA; MEDIATED AUTOPHAGY; EXPRESSION; TRANSLATION; DEGRADATION; PROGRESSION; CELLS; N6-METHYLADENOSINE; METHYLTRANSFERASE;
D O I
10.1186/s13578-024-01225-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autophagy is a cellular self-degradation process that plays a crucial role in maintaining metabolic functions in cells and organisms. Dysfunctional autophagy has been linked to various diseases, including cancer. In cancer, dysregulated autophagy is closely associated with the development of cancer and drug resistance, and it can have both oncogenic and oncostatic effects. Research evidence supports the connection between m6A modification and human diseases, particularly cancer. Abnormalities in m6A modification are involved in the initiation and progression of cancer by regulating the expression of oncogenes and oncostatic genes. There is an interaction between m6A modification and autophagy, both of which play significant roles in cancer. However, the molecular mechanisms underlying this relationship are still unclear. m6A modification can either directly inhibit autophagy or promote its initiation, but the complex relationship between m6A modification, autophagy, and cancer remains poorly understood. Therefore, this paper aims to review the dual role of m6A and autophagy in cancer, explore the impact of m6A modification on autophagy regulation, and discuss the crucial role of the m6A modification-autophagy axis in cancer progression and treatment resistance.
引用
收藏
页数:17
相关论文
共 137 条
[1]   Autophagy Regulation by the Translation Machinery and Its Implications in Cancer [J].
Acevo-Rodriguez, Pilar Sarah ;
Maldonado, Giovanna ;
Castro-Obregon, Susana ;
Hernandez, Greco .
FRONTIERS IN ONCOLOGY, 2020, 10
[2]   Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways [J].
Al-Bari, Md Abdul Alim ;
Xu, Pingyong .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2020, 1467 (01) :3-20
[3]   Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells Check [J].
Alizadeh, Javad ;
Glogowska, Aleksandra ;
Thliveris, James ;
Kalantari, Forouh ;
Shojaei, Shahla ;
Hombach-Klonisch, Sabine ;
Klonisch, Thomas ;
Ghavami, Saeid .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2018, 1865 (05) :749-768
[4]   Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response [J].
Ashrafizadeh, Milad ;
Paskeh, Mahshid Deldar Abad ;
Mirzaei, Sepideh ;
Gholami, Mohammad Hossein ;
Zarrabi, Ali ;
Hashemi, Farid ;
Hushmandi, Kiavash ;
Hashemi, Mehrdad ;
Nabavi, Noushin ;
Crea, Francesco ;
Ren, Jun ;
Klionsky, Daniel J. ;
Kumar, Alan Prem ;
Wang, Yuzhuo .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2022, 41 (01)
[5]   Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways [J].
Ba Lina ;
Gao Jingquan ;
Chen Yunping ;
Qi Hanping ;
Dong Chonghui ;
Pan Hao ;
Zhang Qianhui ;
Shi Pilong ;
Song Chao ;
Guan Xueying ;
Cao Yonggang ;
Sun Hongli .
PHYTOMEDICINE, 2019, 58
[6]   EMT, cancer stem cells and autophagy; The three main axes of metastasis [J].
Babaei, Ghader ;
Aziz, Shiva Gholizadeh-Ghaleh ;
Jaghi, Nasrin Zare Zavieyh .
BIOMEDICINE & PHARMACOTHERAPY, 2021, 133
[7]   Epigenetic modifications of autophagy in cancer and cancer therapeutics [J].
Bhol, Chandra S. ;
Panigrahi, Debasna P. ;
Praharaj, Prakash P. ;
Mahapatra, Kewal K. ;
Patra, Srimanta ;
Mishra, Soumya R. ;
Behera, Bishnu P. ;
Bhutia, Sujit K. .
SEMINARS IN CANCER BIOLOGY, 2020, 66 :22-33
[8]   MODOMICS: a database of RNA modification pathways. 2021 update [J].
Boccaletto, Pietro ;
Stefaniak, Filip ;
Ray, Angana ;
Cappannini, Andrea ;
Mukherjee, Sunandan ;
Purta, Elzbieta ;
Kurkowska, Malgorzata ;
Shirvanizadeh, Niloofar ;
Destefanis, Eliana ;
Groza, Paula ;
Avsar, Gulben ;
Romitelli, Antonia ;
Pir, Pinar ;
Dassi, Erik ;
Conticello, Silvestro G. ;
Aguilo, Francesca ;
Bujnicki, Janusz M. .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D231-D235
[9]   MODOMICS: a database of RNA modification pathways. 2017 update [J].
Boccaletto, Pietro ;
Machnicka, Magdalena A. ;
Purta, Elzbieta ;
Piatkowski, Pawe ;
Baginski, Blazej ;
Wirecki, Tomasz K. ;
de Crecy-Lagard, Valerie ;
Ross, Robert ;
Limbach, Patrick A. ;
Kotter, Annika ;
Helm, Mark ;
Bujnicki, Janusz M. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D303-D307
[10]   mRNA methylation in cell senescence [J].
Casella, Gabriel ;
Tsitsipatis, Dimitrios ;
Abdelmohsen, Kotb ;
Gorospe, Myriam .
WILEY INTERDISCIPLINARY REVIEWS-RNA, 2019, 10 (06)