PGC-1α activation boosts exercise-dependent cellular response in the skeletal muscle

被引:8
作者
Mozaffaritabar, Soroosh [1 ]
Koltai, Erika [1 ]
Zhou, Lei [1 ]
Bori, Zoltan [1 ]
Kolonics, Attila [1 ]
Kujach, Sylwester [1 ,2 ]
Gu, Yaodong [3 ]
Koike, Atsuko [1 ]
Boros, Anita [1 ]
Radak, Zsolt [1 ,4 ]
机构
[1] Hungarian Univ Sport Sci, Res Inst Mol Exercise Sci, H-1123 Budapest, Hungary
[2] Med Univ Gdansk, Fac Hlth Sci, Dept Neurophysiol Neuropsychol & Neuroinformat, PL-80210 Gdansk, Poland
[3] Ningbo Univ, Fac Sports Sci, Ningbo 315211, Peoples R China
[4] Waseda Univ, Waseda Inst Sport Sci, Saitama 3591192, Japan
关键词
Skeletal muscle; PGC-1 alpha overexpression; Exercise; Mitochondrial function; Lipid Metabolism; COACTIVATOR 1-ALPHA PGC-1-ALPHA; PHOSPHATIDYLETHANOLAMINE; SIRT1;
D O I
10.1007/s13105-024-01006-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of Peroxisome proliferator-activated receptor-gamma coactivator alpha (PGC-1 alpha) in fat metabolism is not well known. In this study, we compared the mechanisms of muscle-specific PGC-1 alpha overexpression and exercise-related adaptation-dependent fat metabolism. PGC-1 alpha trained (PGC-1 alpha Ex) and wild-trained (wt-ex) mice were trained for 10 weeks, five times a week at 30 min per day with 60 percent of their maximal running capacity. The PGC-1 alpha overexpressed animals exhibited higher levels of Fibronectin type III domain-containing protein 5 (FNDC5), 5' adenosine monophosphate-activated protein kinase alpha (AMPK-alpha), the mammalian target of rapamycin (mTOR), Sirtuin 1 (SIRT1), Lon protease homolog 1 (LONP1), citrate synthase (CS), succinate dehydrogenase complex flavoprotein subunit A (SDHA), Mitofusin-1 (Mfn1), endothelial nitric oxide synthase (eNOS), Hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), G protein-coupled receptor 41 (GPR41), and Phosphatidylcholine Cytidylyltransferase 2 (PCYT2), and lower levels of Sirtuin 3 (SIRT3) compared to wild-type animals. Exercise training increased the protein content levels of SIRT1, HSL, and ATGL in both the wt-ex and PGC-1 alpha trained groups. PGC-1 alpha has a complex role in cellular signaling, including the upregulation of lipid metabolism-associated proteins. Our data reveals that although exercise training mimics the effects of PGC-1 alpha overexpression, it incorporates some PGC-1 alpha-independent adaptive mechanisms in fat uptake and cell signaling.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 25 条
[1]   Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α) and Sirtuin 1 (SIRT1) Reside in Mitochondria POSSIBLE DIRECT FUNCTION IN MITOCHONDRIAL BIOGENESIS [J].
Aquilano, Katia ;
Vigilanza, Paola ;
Baldelli, Sara ;
Pagliei, Beatrice ;
Rotilio, Giuseppe ;
Ciriolo, Maria Rosa .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (28) :21590-21599
[2]   PGC-1 coactivators and skeletal muscle adaptations in health and disease [J].
Arany, Zolt .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2008, 18 (05) :426-434
[3]   PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure [J].
Canto, Carles ;
Auwerx, Johan .
CURRENT OPINION IN LIPIDOLOGY, 2009, 20 (02) :98-105
[4]   Adipose Triglyceride Lipase Regulation: An Overview [J].
Cerk, Ines Katrin ;
Wechselberger, Lisa ;
Oberer, Monika .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2018, 19 (02) :221-233
[5]  
Cikes D., 2022, bioRxiv, p2022.03.02.482658, DOI DOI 10.1101/2022.03.02.482658
[6]   PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing [J].
Cikes, Domagoj ;
Elsayad, Kareem ;
Sezgin, Erdinc ;
Koitai, Erika ;
Torma, Ferenc ;
Orthofer, Michael ;
Yarwood, Rebecca ;
Heinz, Leonhard X. ;
Sedlyarov, Vitaly ;
Miranda, Nasser Darwish ;
Taylor, Adrian ;
Grapentine, Sophie ;
al-Murshedi, Fathiya ;
Abot, Anne ;
Weidinger, Adelheid ;
Kutchukian, Candice ;
Sanchez, Colline ;
Cronin, Shane J. F. ;
Novatchkova, Maria ;
Kavirayani, Anoop ;
Schuetz, Thomas ;
Haubner, Bernhard ;
Haas, Lisa ;
Hagelkruys, Astrid ;
Jackowski, Suzanne ;
Kozlov, Andrey V. ;
Jacquemond, Vincent ;
Knauf, Claude ;
Superti-Furga, Giulio ;
Rullman, Eric ;
Gustafsson, Thomas ;
Mcdermot, John ;
Lowe, Martin ;
Radak, Zsolt ;
Chamberlain, Jeffrey S. ;
Bakovic, Marica ;
Banka, Siddharth ;
Penninger, Josef M. .
NATURE METABOLISM, 2023, 5 (03) :495-515
[7]   mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex [J].
Cunningham, John T. ;
Rodgers, Joseph T. ;
Arlow, Daniel H. ;
Vazquez, Francisca ;
Mootha, Vamsi K. ;
Puigserver, Pere .
NATURE, 2007, 450 (7170) :736-U12
[8]   Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function [J].
Frampton, James ;
Murphy, Kevin G. ;
Frost, Gary ;
Chambers, Edward S. .
NATURE METABOLISM, 2020, 2 (09) :840-848
[9]   Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise [J].
Fritzen, Andreas Maechel ;
Lundsgaard, Anne-Marie ;
Kiens, Bente .
NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (12) :683-696
[10]   Mitochondrial proteostasis stress in muscle drives a long-range protective response to alleviate dietary obesity independently of ATF4 [J].
Guo, Qiqi ;
Xu, Zhisheng ;
Zhou, Danxia ;
Fu, Tingting ;
Wang, Wen ;
Sun, Wanping ;
Xiao, Liwei ;
Liu, Lin ;
Ding, Chenyun ;
Yin, Yujing ;
Zhou, Zheng ;
Sun, Zongchao ;
Zhu, Yuangang ;
Zhou, Wenjing ;
Jia, Yuhuan ;
Xue, Jiachen ;
Chen, Yuncong ;
Chen, Xiao-Wei ;
Piao, Hai-Long ;
Lu, Bin ;
Gan, Zhenji .
SCIENCE ADVANCES, 2022, 8 (30)