Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future

被引:134
作者
Yang, Jun [1 ,2 ]
Liang, Xinghui [1 ]
Ryu, Hoon-Hee [1 ]
Yoon, Chong S. [3 ,4 ]
Sun, Yang-Kook [1 ,4 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat In, Xian 710021, Shaanxi, Peoples R China
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 04763, South Korea
[4] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Ni-rich layered cathodes; Surface degradation; Mechanical failure; Stabilization strategies; TRANSITION-METAL DISSOLUTION; POSITIVE ELECTRODE MATERIALS; X-RAY-DIFFRACTION; CAPACITY FADING MECHANISMS; CORE-SHELL STRUCTURE; HIGH-ENERGY; CONCENTRATION-GRADIENT; OXIDE CATHODE; HIGH-VOLTAGE; SINGLE-CRYSTAL;
D O I
10.1016/j.ensm.2023.102969
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Extending the limited driving range of current electric vehicles (EVs) necessitates the development of highenergy-density lithium-ion batteries (LIBs) for which Ni-rich layered LiNi1_x_yCoxMnyO2 and LiNi1_x_yCoxAlyO2 cathodes are considered promising cathode candidates. Although the capacity and cost of current LIBs are competitive, a further increase in capacity and reduction in cost are required for next-generation EVs. These performance enhancements can be achieved by increasing the Ni content of layered cathodes. However, enhancements in performance are obtained (using this approach) at the expense of cycling performance and thermal stability, hindering the practical application of these Ni-rich layered cathodes. In this review, the performance limitations of Ni-rich layered cathodes are explored in terms of their surface structural degradation and mechanical failure, as well as the mechanisms of these phenomena. Strategies developed to counter the structural degradation and mechanical failure of Ni-rich layered cathodes through surface stabilization, compositional optimization, microstructural engineering, and cation ordering are evaluated. Finally, future research directions and limitations of Ni-rich layered cathodes are discussed.
引用
收藏
页数:37
相关论文
共 323 条
[41]   Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries [J].
Fan, Xinming ;
Hu, Guorong ;
Zhang, Bao ;
Ou, Xing ;
Zhang, Jiafeng ;
Zhao, Wengao ;
Jia, Haiping ;
Zou, Lianfeng ;
Li, Peng ;
Yang, Yong .
NANO ENERGY, 2020, 70
[42]   High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries [J].
Fan, Zhaoze ;
Xiang, Jiayuan ;
Yu, Qiong ;
Wu, Xianzhang ;
Li, Min ;
Wang, Xiuli ;
Xia, Xinhui ;
Tu, Jiangping .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) :726-735
[43]   Dual-Element-Modified Single-Crystal LiNi0.6Co0.2Mn0.2O2 as a Highly Stable Cathode for Lithium-Ion Batteries [J].
Feng, Ze ;
Zhang, Shan ;
Rajagopalan, Ranjusha ;
Huang, Xiaobing ;
Ren, Yurong ;
Sun, Dan ;
Wang, Haiyan ;
Tang, Yougen .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) :43039-43050
[44]   Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy [J].
Flores, Eibar ;
Vonruti, Nathalie ;
Novak, Petr ;
Aschauer, Ulrich ;
Berg, Erik J. .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4694-4703
[45]   Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with Enhanced Cyclability for Lithium-Ion Batteries [J].
Gan, Qingmeng ;
Qin, Ning ;
Zhu, Youhuan ;
Huang, Zixuan ;
Zhang, Fangchang ;
Gu, Shuai ;
Xie, Jiwei ;
Zhang, Kaili ;
Lu, Li ;
Lu, Zhouguang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) :12594-12604
[46]   Kinetic Limitations in Single-Crystal High-Nickel Cathodes [J].
Ge, Mingyuan ;
Wi, Sungun ;
Liu, Xiang ;
Bai, Jianming ;
Ehrlich, Steven ;
Lu, Deyu ;
Lee, Wah-Keat ;
Chen, Zonghai ;
Wang, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (32) :17350-17355
[47]   Persistent State-of-Charge Heterogeneity in Relaxed, Partially Charged Li1-xNi1/3Co1/3Mn1/3O2 Secondary Particles [J].
Gent, William E. ;
Li, Yiyang ;
Ahn, Sungjin ;
Lim, Jongwoo ;
Liu, Yijin ;
Wise, Anna M. ;
Gopal, Chirranjeevi Balaji ;
Mueller, David N. ;
Davis, Ryan ;
Weker, Johanna Nelson ;
Park, Jin-Hwan ;
Doo, Seok-Kwang ;
Chueh, William C. .
ADVANCED MATERIALS, 2016, 28 (31) :6631-+
[48]   Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells [J].
Gilbert, James A. ;
Shkrob, Ilya A. ;
Abraham, Daniel P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A389-A399
[49]   Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries [J].
Giordano, Livia ;
Karayaylali, Pinar ;
Yu, Yang ;
Katayama, Yu ;
Maglia, Filippo ;
Lux, Simon ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (16) :3881-3887
[50]   Structural Stability of Single-Crystalline Ni-Rich Layered Cathode upon Delithiation [J].
Han, Gi-Mun ;
Kim, Ye-Sung ;
Ryu, Hoon-Hee ;
Sun, Yang-Kook ;
Yoon, Chong S. .
ACS ENERGY LETTERS, 2022, 7 (09) :2919-2926